Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (Broché)

  • Cambridge University Press

  • Paru le : 21/07/2000
Note moyenne : |
Ce produit n'a pas encore été évalué. Soyez le premier !
Donnez votre avis !
The study of geodesic flows on homogeneous spaces is an area of research that bas in recent years yielded some fascinating developments. This book focuses... > Lire la suite
43,20 €
Neuf - Expédié sous 9 à 14 jours
  • ou
    Livré chez vous
    entre le 31 janvier et le 7 février
ou
Votre note
The study of geodesic flows on homogeneous spaces is an area of research that bas in recent years yielded some fascinating developments. This book focuses on many of these, and one of its highlights is an elementary and complete proof (due to Margulis and Dani) of Oppenheim's conjecture. Also included here: an exposition of Ratner's work on Raghunathan's conjectures; a complete proof of the Howe-Moore vanishing theorem for general semisimple Lie groups; new treatment of Mautner's result on the geodesic flow of a Riemanman symmetric space; Mozes' result about mixing of all orders and the asymptotic distribution of lattice points in the hyperbolic plane; Ledrappier's example of a mixing action which is not a mixing of all orders. The treatment is as self-contained and elementary as possible. It should appeal to graduate students and researchers interested in dynamical systems, harmonic analysis, differential geometry, Lie theory and number theory.
    • Ergodic systems
    • The geodesic flow of Riemannian locally symmetric spaces
    • The vanishing theorem of Howe and Moore
    • The horocycle flow
    • Siegel sets, Mahler's criterion and Margulis' lemma
    • An application to number theory: Oppenheim's conjecture.

Nos avis clients sur decitre.fr


Avis Trustpilot

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces est également présent dans les rayons

Matthias Mayer et M-Bachir Bekka - .
Ergodic Theory and Topological Dynamics of Group Actions...
43,20 €
Haut de page
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK