# Proofs that Really Count - The Art of Combinatorial Proof (Relié)

## Arthur-T Benjamin, Jennifer-J Quinn

Note moyenne : | 0 avis
Ce produit n'a pas encore été évalué. Soyez le premier !
• ### Mathematical Association Of Am

• Paru le : 01/01/2003
• 1 million de livres à découvrir
• Livraison à domicile à partir de 0,01 €
• Paiement sécurisé, débit à l'expédition
48,40 €
Neuf - Expédié sous 8 à 14 jours
Livré chez vous entre le 8 juin et le 14 juin
ou
Votre note

## Résumé

Mathematics is the science of patterns, and mathematicians attempt to understood these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The arguments primarily take one of two forms : counting question is posed and answered in two different ways. Since both answers solve the same question they must be equal ; two different sets are described, counted, and a correspondence found between them. One-to-one correspondences guarantee sets of the same size. Almost one-to-one correspondences take error terms into account. Even many-to-one correspondences are utilized. The book explores more than 200 identities throughout the text and exercices, frequently emphasizing numbers not often thought of as numbers that count : Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonie Numbers, to name a few. Numerous hints and references are given for all chapter exercices and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels from high school math students to professional mathematicians.

## Nos avis clients sur decitre.fr

### Proofs that Really Count - The Art of Combinatorial Proof est également présent dans les rayons

Proofs that Really Count. The Art of Combinatorial...
48,40 €
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK