Logic-Based Methods for Optimization. Combining Optimization and Constraint Satisfaction (Relié)

John Hooker

Note moyenne : | 0 avis
Ce produit n'a pas encore été évalué. Soyez le premier !
  • Wiley

  • Paru le : 15/06/2000
  • 1 million de livres à découvrir
  • Livraison à domicile à partir de 0,01 €
  • Paiement sécurisé, débit à l'expédition
101,20 €
Neuf - Expédié sous 8 à 14 jours
Livré chez vous entre le 19 décembre et le 24 décembre
ou
Votre note
While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation. Timely, original, and thought-provoking, Logic-Based Methods for Optimization: • Demonstrates the advantages of combining the techniques in problem solving • Offers tutorials in constraint satisfaction/constraint programming and logical inference • Clearly explains such concepts as relaxation, cutting planes, nonserial dynamic programming, and Bender's decomposition • Reviews the necessary technologies for software developers seeking to combine the two techniques • Features extensive references to important computational studies • And much more
    • Some examples
    • The logic of propositions
    • The logic of discrete variables
    • The logic of 0-1 inequalities
    • Cardinality clauses
    • Classical boolean methods
    • Logic-based modeling
    • Logic-based branch and bound
    • Constraint generation
    • Domain reduction
    • Constraint programming
    • Continuous relaxations
    • Decomposition methods
    • Branching rules
    • Relaxation duality
    • Inference duality
    • Search strategies
    • Logic-based benders decomposition
    • Nonserial dynamic programming
    • Discrete relaxations.
  • Date de parution : 15/06/2000
  • Editeur : Wiley
  • Collection : discrete mathematics optimizat
  • ISBN : 0-471-38521-2
  • EAN : 9780471385219
  • Présentation : Relié
  • Nb. de pages : 495 pages
  • Poids : 0.895 Kg
  • Dimensions : 16,1 cm × 24,2 cm × 2,9 cm

Biographie de John Hooker

JOHN HOOKER, PhD, is Professor of Operations Research and T. Jerome Holleran Professor of Business Ethics and Social Responsibility at the Graduate School of Industrial Administration, Carnegie Mellon University. Well-known for his work in the operations research/computer science interface, Dr. Hooker has published over 80 articles and coauthored (with Vijay Chandru) Optimization Methods for Logical Inference, also available from Wiley.

Nos avis clients sur decitre.fr


Avis Trustpilot

Logic-Based Methods for Optimization. Combining Optimization and Constraint Satisfaction est également présent dans les rayons

John Hooker - .
Logic-Based Methods for Optimization. Combining Optimization and Constraint...
101,20 €
Haut de page
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK

Ne partez pas tout de suite...

Inscription newsletter