Algèbre et géométrie dans les espaces affines euclidiens de dimension 2 ou 3. Mathématiques spéciales MP-MP*-PSI*-CAPES-Agrégation

Par : Pierre Meunier

Formats :

  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Nombre de pages204
  • PrésentationBroché
  • FormatGrand Format
  • Poids0.27 kg
  • Dimensions14,5 cm × 20,5 cm × 1,3 cm
  • ISBN978-2-36493-569-3
  • EAN9782364935693
  • Date de parution01/01/2017
  • ÉditeurCépaduès

Résumé

La géométrie est probablement la première manifestation effective du raisonnement abstrait, révélant son authentique richesse à partir du moment où Descartes introduisit la notion de repère (orthonormal ou non) rendant ainsi complémentaires et solidaires l'algèbre, l'analyse et la géométrie. Dans ce recueil est d'abord passé en revue (chap. 1 et 2) tout ce qui de l'algèbre linéaire ou bilinéaire approfondit la géométrie du triangle : points de Lemoine et Torricelli, droites de Simson et hypocycloïde à 3 rebroussements formant leur enveloppe, cercles d'Euler, de Lemoine et de Tücker, ellipses de Steiner, coniques passant par quatre points avec étude du cas particulier où l'un de ces points est l'orthocentre du triangle formé par les trois autres, lieux orthoptiques, coniques homofocales...
La géométrie est probablement la première manifestation effective du raisonnement abstrait, révélant son authentique richesse à partir du moment où Descartes introduisit la notion de repère (orthonormal ou non) rendant ainsi complémentaires et solidaires l'algèbre, l'analyse et la géométrie. Dans ce recueil est d'abord passé en revue (chap. 1 et 2) tout ce qui de l'algèbre linéaire ou bilinéaire approfondit la géométrie du triangle : points de Lemoine et Torricelli, droites de Simson et hypocycloïde à 3 rebroussements formant leur enveloppe, cercles d'Euler, de Lemoine et de Tücker, ellipses de Steiner, coniques passant par quatre points avec étude du cas particulier où l'un de ces points est l'orthocentre du triangle formé par les trois autres, lieux orthoptiques, coniques homofocales...