Les représentations linéaires et le grand théorème de Fermat

Par : Pascale Harinck, Alain Plagne, Claude Sabbah

Formats :

  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages126
  • PrésentationBroché
  • Poids0.255 kg
  • Dimensions17,0 cm × 24,0 cm × 0,9 cm
  • ISBN978-2-7302-1566-4
  • EAN9782730215664
  • Date de parution16/02/2010
  • CollectionJournées mathématiques X-UP
  • ÉditeurEcole Polytechnique (editions)

Résumé

La démonstration du " grand théorème de Fermat " par Andrew Wiles utilise la théorie des représentations des groupes de matrices. Cette théorie, dont l'origine est motivée par la physique, a un intérêt propre indépendant de ses applications arithmétiques. Ce volume en présente les principes les plus essentiels, illustrés par l'exemple des matrices de taille 2, et met en évidence le rôle crucial qu'elle joue dans-1a démarche de Wiles. Les textes et leurs auteurs. Guy Henniart décrit brièvement la théorie générale des représentations linéaires des groupes finis et l'applique au groupe des matrices de taille 2 sur un corps fini. Martin Andler développe la théorie sur le corps des nombres réels et fait le lien entre formes modulaires et représentations irréductibles. Corinne Blondel présente la théorie pour le corps des nombres p-adiques. Enfin, Guy Henniart esquisse le cheminement d'Andrew Wiles aboutissant au théorème de Fermat.
La démonstration du " grand théorème de Fermat " par Andrew Wiles utilise la théorie des représentations des groupes de matrices. Cette théorie, dont l'origine est motivée par la physique, a un intérêt propre indépendant de ses applications arithmétiques. Ce volume en présente les principes les plus essentiels, illustrés par l'exemple des matrices de taille 2, et met en évidence le rôle crucial qu'elle joue dans-1a démarche de Wiles. Les textes et leurs auteurs. Guy Henniart décrit brièvement la théorie générale des représentations linéaires des groupes finis et l'applique au groupe des matrices de taille 2 sur un corps fini. Martin Andler développe la théorie sur le corps des nombres réels et fait le lien entre formes modulaires et représentations irréductibles. Corinne Blondel présente la théorie pour le corps des nombres p-adiques. Enfin, Guy Henniart esquisse le cheminement d'Andrew Wiles aboutissant au théorème de Fermat.
Heisenberg et son groupe
Pascale Harinck, Alain Plagne, Claude Sabbah
Grand Format
19,90 €