Formes différentielles et analyse vectorielle. Cours et exercices corrigés

Par : Ahmed Lesfari
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages263
  • PrésentationBroché
  • FormatGrand Format
  • Poids0.502 kg
  • Dimensions19,0 cm × 24,0 cm × 1,4 cm
  • ISBN978-2-340-01563-0
  • EAN9782340015630
  • Date de parution16/05/2017
  • CollectionRéférences sciences
  • ÉditeurEllipses

Résumé

Ce livre s'adresse pour sa majeure partie aux étudiants de licence (L2, L3) en mathématiques et/ou physique ainsi qu'aux élèves des grandes écoles scientifiques et techniques. Il peut également être utile à des étudiants plus avancés : CAPES, agrégation, master de mathématiques (M1, M2). On y trouve seize chapitres intitulés : Généralités, Produit extérieur, Différentielle extérieure, Formes fermées et formes exactes, Intégration des formes différentielles, Transposée des formes différentielles, Bord d'un simplexe et d'une chaîne, Théorème de Stokes-Cartan, Intégration des fonctions holomorphes, Formes symplectiques, Calcul variationnel, Formes différentielles sur les surfaces de Riemann, Exercices résolus, Appendice 1 (intégrales multiples), Appendice 2 (variétés différentiables), Appendice 3 (démonstration de quelques théorèmes), une bibliographie et un index.
De nombreux exemples et exercices avec solutions se trouvent disséminés dans le texte.
Ce livre s'adresse pour sa majeure partie aux étudiants de licence (L2, L3) en mathématiques et/ou physique ainsi qu'aux élèves des grandes écoles scientifiques et techniques. Il peut également être utile à des étudiants plus avancés : CAPES, agrégation, master de mathématiques (M1, M2). On y trouve seize chapitres intitulés : Généralités, Produit extérieur, Différentielle extérieure, Formes fermées et formes exactes, Intégration des formes différentielles, Transposée des formes différentielles, Bord d'un simplexe et d'une chaîne, Théorème de Stokes-Cartan, Intégration des fonctions holomorphes, Formes symplectiques, Calcul variationnel, Formes différentielles sur les surfaces de Riemann, Exercices résolus, Appendice 1 (intégrales multiples), Appendice 2 (variétés différentiables), Appendice 3 (démonstration de quelques théorèmes), une bibliographie et un index.
De nombreux exemples et exercices avec solutions se trouvent disséminés dans le texte.