Eléments d'analyse et d'algèbre (et de théorie des nombres)
Par :Formats :
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
- Paiement en ligne :
- Livraison à domicile ou en point Mondial Relay indisponible
- Retrait Click and Collect en magasin gratuit
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages470
- PrésentationBroché
- Poids0.815 kg
- Dimensions16,5 cm × 24,0 cm × 2,5 cm
- ISBN978-2-7302-1563-3
- EAN9782730215633
- Date de parution27/10/2009
- ÉditeurEcole Polytechnique (editions)
Résumé
Cet ouvrage est susceptible d'intéresser le bon élève de classe préparatoire, l'étudiant de L3, ainsi que toute personne ayant atteint ce niveau et cherchant à saisir le fonctionnement interne des mathématiques. Cet ouvrage est issu d'un cours en première année à l'École Polytechnique. Il offre une introduction à trois des théories à la racine des mathématiques et recouvre une bonne partie du cursus de L3 à l'Université. Les théories abordées sont : la théorie des représentations des groupes finis, qui est à la fois une extension naturelle de l'algèbre linéaire et une première approche de la transformée de Fourier, - l'analyse fonctionnelle classique (espaces de Banach et Hilbert, intégrale de Lebesgue, transformée de Fourier) ; la théorie des fonctions holomorphes. Le cours est complété par un chapitre " Vocabulaire Mathématique " (avec une soixantaine d'exercices corrigés) qui regroupe et précise des notions de base, vues en L1 et L2 ou pendant les classes préparatoires, et par 9 problèmes corrigés couvrant l'intégralité du programme. La principale originalité de l'ouvrage vient de l'accent mis sur l'aspect culturel des mathématiques. De nombreuses notes de bas de page proposent de petites excursions en dehors de l'auto-route des mathématiques utiles. Six appendices présentent des extraits de la littérature classique et moderne, accessibles avec le contenu du cours, qui illustrent l'unité des mathématiques en montrant comment les théories de base se combinent pour la résolution de problèmes naturels profonds. L'un d'entre eux est consacré au théorème des nombres premiers ; un autre est une introduction au programme de Langlands, qui occupe les arithméticiens depuis plus de 40 ans, et dont une des retombées les plus spectaculaires est la démonstration du théorème de Fermat.
Cet ouvrage est susceptible d'intéresser le bon élève de classe préparatoire, l'étudiant de L3, ainsi que toute personne ayant atteint ce niveau et cherchant à saisir le fonctionnement interne des mathématiques. Cet ouvrage est issu d'un cours en première année à l'École Polytechnique. Il offre une introduction à trois des théories à la racine des mathématiques et recouvre une bonne partie du cursus de L3 à l'Université. Les théories abordées sont : la théorie des représentations des groupes finis, qui est à la fois une extension naturelle de l'algèbre linéaire et une première approche de la transformée de Fourier, - l'analyse fonctionnelle classique (espaces de Banach et Hilbert, intégrale de Lebesgue, transformée de Fourier) ; la théorie des fonctions holomorphes. Le cours est complété par un chapitre " Vocabulaire Mathématique " (avec une soixantaine d'exercices corrigés) qui regroupe et précise des notions de base, vues en L1 et L2 ou pendant les classes préparatoires, et par 9 problèmes corrigés couvrant l'intégralité du programme. La principale originalité de l'ouvrage vient de l'accent mis sur l'aspect culturel des mathématiques. De nombreuses notes de bas de page proposent de petites excursions en dehors de l'auto-route des mathématiques utiles. Six appendices présentent des extraits de la littérature classique et moderne, accessibles avec le contenu du cours, qui illustrent l'unité des mathématiques en montrant comment les théories de base se combinent pour la résolution de problèmes naturels profonds. L'un d'entre eux est consacré au théorème des nombres premiers ; un autre est une introduction au programme de Langlands, qui occupe les arithméticiens depuis plus de 40 ans, et dont une des retombées les plus spectaculaires est la démonstration du théorème de Fermat.








