Cours De Mathematiques Speciales. Tome 1, Algebre

Par : Bernard Gostiaux

Formats :

  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages468
  • PrésentationBroché
  • Poids0.63 kg
  • Dimensions15,0 cm × 21,7 cm × 2,3 cm
  • ISBN2-13-045835-1
  • EAN9782130458357
  • Date de parution01/08/1993
  • CollectionMathématiques
  • ÉditeurPUF

Résumé

A l'origine cours de mathématiques spéciales, cet ouvrage donne aussi une vue plus générale des mathématiques du premier cycle en insistant particulièrement sur les structures et théorèmes fondamentaux. On y trouvera ainsi les constructions des ensembles mathématiques usuels (N, Z, Q, R, C), l'utilisation de l'axiome de Zorn, les Théorèmes d'Erdös-Kaplansky, de Baire, de Stone-Weierstrass ainsi que d'autres résultats - parfois aux confins du programme - que l'étudiant curieux peut être conduit à rechercher. La présence d'exercices corrigés facilitera l'acquisition du savoir-faire technique nécessaire à l'étude du cours. Ce traité comporte trois volumes : Algèbre, Topologie et analyse réelle, Espaces fonctionnels. Dans le premier tome, la construction de N, Z et Q met en évidence l'importance des relations d'équivalence et du passage au quotient. L'étude des propriétés des. espaces vectoriels, suivant qu'ils soient de dimension finie ou non, s'appuie sur les résultats acquis sur les cardinaux infinis. Les polynômes, étudiés sur un corps K, donneront une construction de C, corps de décomposition de (X*X) + 1, mais serviront aussi dans l'étude des polynômes d'endomorphismes ainsi que pour la réduction des endomorphismes (diagonalisation, trigonalisation et jordanisation). Enfin, l'étude des formes quadratiques et hermitiennes complète ce tome d'Algèbre.
A l'origine cours de mathématiques spéciales, cet ouvrage donne aussi une vue plus générale des mathématiques du premier cycle en insistant particulièrement sur les structures et théorèmes fondamentaux. On y trouvera ainsi les constructions des ensembles mathématiques usuels (N, Z, Q, R, C), l'utilisation de l'axiome de Zorn, les Théorèmes d'Erdös-Kaplansky, de Baire, de Stone-Weierstrass ainsi que d'autres résultats - parfois aux confins du programme - que l'étudiant curieux peut être conduit à rechercher. La présence d'exercices corrigés facilitera l'acquisition du savoir-faire technique nécessaire à l'étude du cours. Ce traité comporte trois volumes : Algèbre, Topologie et analyse réelle, Espaces fonctionnels. Dans le premier tome, la construction de N, Z et Q met en évidence l'importance des relations d'équivalence et du passage au quotient. L'étude des propriétés des. espaces vectoriels, suivant qu'ils soient de dimension finie ou non, s'appuie sur les résultats acquis sur les cardinaux infinis. Les polynômes, étudiés sur un corps K, donneront une construction de C, corps de décomposition de (X*X) + 1, mais serviront aussi dans l'étude des polynômes d'endomorphismes ainsi que pour la réduction des endomorphismes (diagonalisation, trigonalisation et jordanisation). Enfin, l'étude des formes quadratiques et hermitiennes complète ce tome d'Algèbre.