Analyse vectorielle. Courbes et surfaces, équations aux dérivées partielles
Par :Formats :
- Paiement en ligne :
- Livraison à domicile ou en point Mondial Relay indisponible
- Retrait Click and Collect en magasin gratuit
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages267
- PrésentationBroché
- FormatGrand Format
- Poids0.546 kg
- Dimensions17,0 cm × 24,0 cm × 1,8 cm
- ISBN978-2-8208-1882-9
- EAN9782820818829
- Date de parution02/10/2025
- ÉditeurRue des Ecoles
Résumé
Ce manuel propose une introduction rigoureuse aux outils de l'analyse vectorielle et de la géométrie différentielle, en les plaçant au service de l'étude des équations aux dérivées partielles, avec un accent particulier sur les grandes équations de la physique mathématique : équations des ondes, de la chaleur, de Laplace, etc. Il offre également un exposé complet du calcul différentiel et intégral pour les fonctions de plusieurs variables, fondamental pour aborder ces problématiques.
Un chapitre est consacré à la résolution numérique des équations aux dérivées partielles, à l'aide du langage Python. Il constitue une ouverture vers l'implémentation concrète des méthodes et intéressera particulièrement les étudiants en mathématiques appliquées et les élèves ingénieurs.
Un chapitre est consacré à la résolution numérique des équations aux dérivées partielles, à l'aide du langage Python. Il constitue une ouverture vers l'implémentation concrète des méthodes et intéressera particulièrement les étudiants en mathématiques appliquées et les élèves ingénieurs.
Ce manuel propose une introduction rigoureuse aux outils de l'analyse vectorielle et de la géométrie différentielle, en les plaçant au service de l'étude des équations aux dérivées partielles, avec un accent particulier sur les grandes équations de la physique mathématique : équations des ondes, de la chaleur, de Laplace, etc. Il offre également un exposé complet du calcul différentiel et intégral pour les fonctions de plusieurs variables, fondamental pour aborder ces problématiques.
Un chapitre est consacré à la résolution numérique des équations aux dérivées partielles, à l'aide du langage Python. Il constitue une ouverture vers l'implémentation concrète des méthodes et intéressera particulièrement les étudiants en mathématiques appliquées et les élèves ingénieurs.
Un chapitre est consacré à la résolution numérique des équations aux dérivées partielles, à l'aide du langage Python. Il constitue une ouverture vers l'implémentation concrète des méthodes et intéressera particulièrement les étudiants en mathématiques appliquées et les élèves ingénieurs.













