Analyse fonctionnelle. Théorie et applications

Par : Haïm Brezis

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages233
  • PrésentationBroché
  • Poids0.43 kg
  • Dimensions17,0 cm × 24,0 cm × 1,3 cm
  • ISBN2-10-049336-1
  • EAN9782100493364
  • Date de parution01/04/2005
  • CollectionSciences sup
  • ÉditeurDunod

Résumé

Cet ouvrage reprend sous une forme plus élaborée un cours de master enseigné à l'Université Pierre-et-Marie-Curie (Paris 6). Il suppose connus les éléments de base de topologie générale, d'intégration et de calcul différentiel. La première partie (chapitres I à VII) développe des résultats " abstraits " d'analyse fonctionnelle. La seconde partie (chapitres VIII à X) concerne l'étude d'espaces fonctionnels " concrets " qui interviennent en théorie des équations aux dérivées partielles ; on y montre comment des théorèmes d'existence " abstraits " permettent de résoudre des équations aux dérivées partielles. Ces deux branches de l'analyse sont étroitement liées. Historiquement, l'analyse fonctionnelle " abstraite " s'est d'abord développée pour répondre à des questions soulevées par la résolution d'équations aux dérivées partielles. Inversement, les progrès de l'analyse fonctionnelle " abstraite " ont considérablement stimulé la théorie des équations aux dérivées partielles. Ce livre pourra être utile tant aux étudiants intéressés par les mathématiques pures qu'à ceux qui désirent s'orienter vers les mathématiques appliquées.
Cet ouvrage reprend sous une forme plus élaborée un cours de master enseigné à l'Université Pierre-et-Marie-Curie (Paris 6). Il suppose connus les éléments de base de topologie générale, d'intégration et de calcul différentiel. La première partie (chapitres I à VII) développe des résultats " abstraits " d'analyse fonctionnelle. La seconde partie (chapitres VIII à X) concerne l'étude d'espaces fonctionnels " concrets " qui interviennent en théorie des équations aux dérivées partielles ; on y montre comment des théorèmes d'existence " abstraits " permettent de résoudre des équations aux dérivées partielles. Ces deux branches de l'analyse sont étroitement liées. Historiquement, l'analyse fonctionnelle " abstraite " s'est d'abord développée pour répondre à des questions soulevées par la résolution d'équations aux dérivées partielles. Inversement, les progrès de l'analyse fonctionnelle " abstraite " ont considérablement stimulé la théorie des équations aux dérivées partielles. Ce livre pourra être utile tant aux étudiants intéressés par les mathématiques pures qu'à ceux qui désirent s'orienter vers les mathématiques appliquées.