
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Par :Formats :
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages599
- PrésentationBroché
- FormatGrand Format
- Poids0.94 kg
- Dimensions15,5 cm × 23,5 cm × 3,5 cm
- ISBN978-0-387-70913-0
- EAN9780387709130
- Date de parution01/01/2011
- CollectionUniversitext
- ÉditeurSpringer
Résumé
Moreover, the wealth of exercises and additional material presented, leads the reader to the frontier of research. This book has its roots in a celebrated course taught by the author for many years and is a completely revised, updated, and expanded English edition of the important Analyse Fonctionnelle (5983). Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese.
The English version is a welcome addition to this list. The first part of the text deals with abstract results in FA and operator theory. The second part is concerned with the study of spaces of functions (of one or more real variables) having specific differentiability properties, e.g., the celebrated Sobolev spaces, which lie at the heart of the modern theory of PDEs. The Sobolev spaces occur in a wide range of questions, both in pure and applied mathematics, appearing in linear and nonlinear PDEs which arise, for example, in differential geometry, harmonic analysis, engineering, mechanics, physics etc.
and belong in the toolbox of any graduate student studying analysis.
Moreover, the wealth of exercises and additional material presented, leads the reader to the frontier of research. This book has its roots in a celebrated course taught by the author for many years and is a completely revised, updated, and expanded English edition of the important Analyse Fonctionnelle (5983). Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese.
The English version is a welcome addition to this list. The first part of the text deals with abstract results in FA and operator theory. The second part is concerned with the study of spaces of functions (of one or more real variables) having specific differentiability properties, e.g., the celebrated Sobolev spaces, which lie at the heart of the modern theory of PDEs. The Sobolev spaces occur in a wide range of questions, both in pure and applied mathematics, appearing in linear and nonlinear PDEs which arise, for example, in differential geometry, harmonic analysis, engineering, mechanics, physics etc.
and belong in the toolbox of any graduate student studying analysis.