Técnicas Estadísticas para la Ciencia de Datos a través de R. Aprendizaje Supervisado: Análisis Discriminante, Árboles de Decisión, Redes Neuronales y Modelos Lineales Generalizados
Par :Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
, qui est-ce ?Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- FormatePub
- ISBN8227685162
- EAN9798227685162
- Date de parution18/01/2025
- Protection num.pas de protection
- Infos supplémentairesepub
- ÉditeurBig Dog Books, LLC
Résumé
La ciencia de datos es un campo interdisciplinar que utiliza métodos, algoritmos, procesos y sistemas para extraer conocimiento y conclusiones a partir de datos estructurados y no estructurados. Combina elementos de estadística, informática, matemáticas y técnicas de análisis para resolver problemas, hacer predicciones y generar valor a partir de los datos y es un soporte importante para la Inteligencia Artificial.
Se apoya en grandes volúmenes de datos (big data) y utiliza el aprendizaje automático (Machine Learning) para descubrir patrones, tendencias y relaciones que pueden ser utilizadas para la toma de decisiones. Los algoritmos de Ciencia de Datos utilizan métodos computacionales para extraer información directamente de los datos. El aprendizaje automático usa dos tipos de técnicas: el aprendizaje supervisado, que entrena a un modelo con datos conocidos de entrada y salida para que pueda predecir resultados futuros, y el aprendizaje no supervisado, que encuentra patrones ocultos o estructuras intrínsecas en los datos de entrada. La mayoría de las técnicas de aprendizaje supervisado se desarrollan a lo largo de este libro desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R.
Se profundiza en las siguientes técnicas: Análisis Discriminante, Árboles de Decisión, Modelos Logit, Modelos Probit, Modelos de Recuento, Modelos Lineales Generalizados, Modelos de Elección Discreta, Random Forest, Redes Neuronales, Perceptrón Multicapa, Redes de Base Radial, Redes LSTM, Redes Recurrentes RNN y Redes Neuronales para Predicción de Series Temporales.
Se apoya en grandes volúmenes de datos (big data) y utiliza el aprendizaje automático (Machine Learning) para descubrir patrones, tendencias y relaciones que pueden ser utilizadas para la toma de decisiones. Los algoritmos de Ciencia de Datos utilizan métodos computacionales para extraer información directamente de los datos. El aprendizaje automático usa dos tipos de técnicas: el aprendizaje supervisado, que entrena a un modelo con datos conocidos de entrada y salida para que pueda predecir resultados futuros, y el aprendizaje no supervisado, que encuentra patrones ocultos o estructuras intrínsecas en los datos de entrada. La mayoría de las técnicas de aprendizaje supervisado se desarrollan a lo largo de este libro desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R.
Se profundiza en las siguientes técnicas: Análisis Discriminante, Árboles de Decisión, Modelos Logit, Modelos Probit, Modelos de Recuento, Modelos Lineales Generalizados, Modelos de Elección Discreta, Random Forest, Redes Neuronales, Perceptrón Multicapa, Redes de Base Radial, Redes LSTM, Redes Recurrentes RNN y Redes Neuronales para Predicción de Series Temporales.
La ciencia de datos es un campo interdisciplinar que utiliza métodos, algoritmos, procesos y sistemas para extraer conocimiento y conclusiones a partir de datos estructurados y no estructurados. Combina elementos de estadística, informática, matemáticas y técnicas de análisis para resolver problemas, hacer predicciones y generar valor a partir de los datos y es un soporte importante para la Inteligencia Artificial.
Se apoya en grandes volúmenes de datos (big data) y utiliza el aprendizaje automático (Machine Learning) para descubrir patrones, tendencias y relaciones que pueden ser utilizadas para la toma de decisiones. Los algoritmos de Ciencia de Datos utilizan métodos computacionales para extraer información directamente de los datos. El aprendizaje automático usa dos tipos de técnicas: el aprendizaje supervisado, que entrena a un modelo con datos conocidos de entrada y salida para que pueda predecir resultados futuros, y el aprendizaje no supervisado, que encuentra patrones ocultos o estructuras intrínsecas en los datos de entrada. La mayoría de las técnicas de aprendizaje supervisado se desarrollan a lo largo de este libro desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R.
Se profundiza en las siguientes técnicas: Análisis Discriminante, Árboles de Decisión, Modelos Logit, Modelos Probit, Modelos de Recuento, Modelos Lineales Generalizados, Modelos de Elección Discreta, Random Forest, Redes Neuronales, Perceptrón Multicapa, Redes de Base Radial, Redes LSTM, Redes Recurrentes RNN y Redes Neuronales para Predicción de Series Temporales.
Se apoya en grandes volúmenes de datos (big data) y utiliza el aprendizaje automático (Machine Learning) para descubrir patrones, tendencias y relaciones que pueden ser utilizadas para la toma de decisiones. Los algoritmos de Ciencia de Datos utilizan métodos computacionales para extraer información directamente de los datos. El aprendizaje automático usa dos tipos de técnicas: el aprendizaje supervisado, que entrena a un modelo con datos conocidos de entrada y salida para que pueda predecir resultados futuros, y el aprendizaje no supervisado, que encuentra patrones ocultos o estructuras intrínsecas en los datos de entrada. La mayoría de las técnicas de aprendizaje supervisado se desarrollan a lo largo de este libro desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R.
Se profundiza en las siguientes técnicas: Análisis Discriminante, Árboles de Decisión, Modelos Logit, Modelos Probit, Modelos de Recuento, Modelos Lineales Generalizados, Modelos de Elección Discreta, Random Forest, Redes Neuronales, Perceptrón Multicapa, Redes de Base Radial, Redes LSTM, Redes Recurrentes RNN y Redes Neuronales para Predicción de Series Temporales.























