Nouveauté
Machine Learning with R. Supervised Learning: Regression. MACHINE LEARNING
Par :Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
, qui est-ce ?Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- FormatePub
- ISBN8231098477
- EAN9798231098477
- Date de parution24/10/2025
- Protection num.pas de protection
- Infos supplémentairesepub
- ÉditeurWalzone Press
Résumé
This book develops supervised learning techniques commonly used in Predictive Artificial Intelligence and Data Science applications. The techniques are illustrated with fully solved examples using the appropriate software. The R language and its libraries related to supervised learning, ideal for working in this field, will be used. The course will go into predictive algorithms such as Multiple Linear Regression, Ridge Regression, PLS Regression, LARS Regression, LASSO Regression, Elastic Net Regression, Generalized Linear Model, Robust Regression, Support Vector Regression (SVR), Kernel Ridge Regression (Kernel Ridge Regression), Kernel Ridge Regression (Kernel Ridge Regression) and Kernel Ridge Regression (Kernel Ridge Regression), Kernel Ridge Regression (KRR), Stochastic Gradient Descendent Regression (SGD), Hubert Regression, Poisson Regression, Negative Binomial Regression, Logit and Probit Models, Count Models and Neural Network Models (LSTM, RNN, NARX, NNAR and GRU).
This book develops supervised learning techniques commonly used in Predictive Artificial Intelligence and Data Science applications. The techniques are illustrated with fully solved examples using the appropriate software. The R language and its libraries related to supervised learning, ideal for working in this field, will be used. The course will go into predictive algorithms such as Multiple Linear Regression, Ridge Regression, PLS Regression, LARS Regression, LASSO Regression, Elastic Net Regression, Generalized Linear Model, Robust Regression, Support Vector Regression (SVR), Kernel Ridge Regression (Kernel Ridge Regression), Kernel Ridge Regression (Kernel Ridge Regression) and Kernel Ridge Regression (Kernel Ridge Regression), Kernel Ridge Regression (KRR), Stochastic Gradient Descendent Regression (SGD), Hubert Regression, Poisson Regression, Negative Binomial Regression, Logit and Probit Models, Count Models and Neural Network Models (LSTM, RNN, NARX, NNAR and GRU).























