Nouveauté

Machine Learning a través de R. Aprendizaje Supervisado: Modelos Predictivos para la Clasificación. MACHINE LEARNING

Par : César Pérez López
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8232662707
  • EAN9798232662707
  • Date de parution06/11/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurHamza elmir

Résumé

Los algoritmos de Machine Learning utilizan métodos computacionales para extraer información directamente de los datos. El aprendizaje automático utiliza dos tipos de técnicas: el aprendizaje supervisado, que entrena a un modelo con datos conocidos de entrada y salida para que pueda predecir resultados futuros, y el aprendizaje no supervisado, que encuentra patrones ocultos o estructuras intrínsecas en los datos de entrada.
La mayoría de las técnicas de aprendizaje supervisado se desarrollan a lo largo de este libro desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R. Se profundiza en las siguientes técnicas: Análisis Discriminante, Modelos Logit, Modelos Probit, Modelos de Recuento, Modelos Lineales Generalizados, Modelos de Elección Discreta, Árboles de Decisión y Redes neuronales
Los algoritmos de Machine Learning utilizan métodos computacionales para extraer información directamente de los datos. El aprendizaje automático utiliza dos tipos de técnicas: el aprendizaje supervisado, que entrena a un modelo con datos conocidos de entrada y salida para que pueda predecir resultados futuros, y el aprendizaje no supervisado, que encuentra patrones ocultos o estructuras intrínsecas en los datos de entrada.
La mayoría de las técnicas de aprendizaje supervisado se desarrollan a lo largo de este libro desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R. Se profundiza en las siguientes técnicas: Análisis Discriminante, Modelos Logit, Modelos Probit, Modelos de Recuento, Modelos Lineales Generalizados, Modelos de Elección Discreta, Árboles de Decisión y Redes neuronales