La Data Science pour modéliser les systèmes complexes. Optimiser la prédiction, l'estimation et l'interprétation

Par : Alain Chautard
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages224
  • FormatPDF
  • ISBN978-2-10-084937-6
  • EAN9782100849376
  • Date de parution07/09/2022
  • Copier CollerNon Autorisé
  • Protection num.Adobe DRM
  • Taille4 Mo
  • Infos supplémentairespdf
  • ÉditeurDunod

Résumé

Aujourd'hui, les ingénieurs, les chercheurs, les managers de projets ou de processus ont à leur disposition des quantités de données de plus en plus considérables. Le développement de la Data Science permet d'utiliser celles-ci à des fins de prévision, de pronostic ou d'aide à la décision. Si les méthodes linéaires de modélisation fonctionnent dans la plupart des environnements, elles présentent d'importants biais dès lors qu'on a affaire à des systèmes complexes comme c'est le cas en météorologie (et pour les phénomènes naturels en général), en physique non linéaire, mais aussi en économétrie ou en finance.
En s'appuyant sur deux cas concrets représentatifs (phénomène naturel, gestion de projet), cet ouvrage montre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d'estimation et d'interprétation.
Aujourd'hui, les ingénieurs, les chercheurs, les managers de projets ou de processus ont à leur disposition des quantités de données de plus en plus considérables. Le développement de la Data Science permet d'utiliser celles-ci à des fins de prévision, de pronostic ou d'aide à la décision. Si les méthodes linéaires de modélisation fonctionnent dans la plupart des environnements, elles présentent d'importants biais dès lors qu'on a affaire à des systèmes complexes comme c'est le cas en météorologie (et pour les phénomènes naturels en général), en physique non linéaire, mais aussi en économétrie ou en finance.
En s'appuyant sur deux cas concrets représentatifs (phénomène naturel, gestion de projet), cet ouvrage montre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d'estimation et d'interprétation.