Alain Chautard

Dernière sortie

La Data Science pour modéliser les systèmes complexes

Aujourd'hui, les ingénieurs, les chercheurs, les managers de projets ou de processus ont à leur disposition des quantités de données de plus en plus considérables. Le développement de la Data Science permet d'utiliser celles-ci à des fins de prévision, de pronostic ou d'aide à la décision. Si les méthodes linéaires de modélisation fonctionnent dans la plupart des environnements, elles présentent d'importants biais dès lors qu'on a affaire à des systèmes complexes comme c'est le cas en météorologie (et pour les phénomènes naturels en général), en physique non linéaire, mais aussi en économétrie ou en finance.
En s'appuyant sur deux cas concrets représentatifs (phénomène naturel, gestion de projet), cet ouvrage montre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d'estimation et d'interprétation.
Aujourd'hui, les ingénieurs, les chercheurs, les managers de projets ou de processus ont à leur disposition des quantités de données de plus en plus considérables. Le développement de la Data Science permet d'utiliser celles-ci à des fins de prévision, de pronostic ou d'aide à la décision. Si les méthodes linéaires de modélisation fonctionnent dans la plupart des environnements, elles présentent d'importants biais dès lors qu'on a affaire à des systèmes complexes comme c'est le cas en météorologie (et pour les phénomènes naturels en général), en physique non linéaire, mais aussi en économétrie ou en finance.
En s'appuyant sur deux cas concrets représentatifs (phénomène naturel, gestion de projet), cet ouvrage montre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d'estimation et d'interprétation.
Offrir maintenant
Ou planifier dans votre panier

Les livres de Alain Chautard