Mémoires de la SMF N° 171/2021
On the evolution by duality of domains on manifolds

Par : Koléhè Coulibaly-Pasquier, Laurent Miclo
  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages110
  • PrésentationBroché
  • FormatGrand Format
  • Poids0.325 kg
  • Dimensions17,5 cm × 24,0 cm × 0,9 cm
  • ISBN978-2-85629-935-7
  • EAN9782856299357
  • Date de parution01/01/2022
  • ÉditeurSociété Mathématique de France

Résumé

On a manifold, consider an elliptic diffusion X admitting an invariant measure µ. The goal of this paper is to introduce and investigate the first properties of stochastic domain evolutions (Dt),TE(0,T) which are intertwining dual processes for X (where T is an appropriate positive stopping time before the potential emergence of singularities). They provide an extension of Pitman's theorem, as it turns out that (µ(Dt)),tE(o,t)] is a Bessel-3 process, up to a natural time-change.
When X is a Brownian motion on a Riemannian manifold, the dual domain-valued process is a stochastic modification of the mean curvature flow to which is added an isoperimetric ratio drift to prevent it from collapsing into singletons.
On a manifold, consider an elliptic diffusion X admitting an invariant measure µ. The goal of this paper is to introduce and investigate the first properties of stochastic domain evolutions (Dt),TE(0,T) which are intertwining dual processes for X (where T is an appropriate positive stopping time before the potential emergence of singularities). They provide an extension of Pitman's theorem, as it turns out that (µ(Dt)),tE(o,t)] is a Bessel-3 process, up to a natural time-change.
When X is a Brownian motion on a Riemannian manifold, the dual domain-valued process is a stochastic modification of the mean curvature flow to which is added an isoperimetric ratio drift to prevent it from collapsing into singletons.