Astérisque N° 293/2004
The Riemann-Hilbert correspondence for unit F-crystals

Par : Matthew Emerton, Mark Kisin
  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages257
  • PrésentationBroché
  • FormatGrand Format
  • Poids0.53 kg
  • Dimensions17,5 cm × 24,0 cm × 1,5 cm
  • ISBN2-85629-154-6
  • EAN9782856291542
  • Date de parution01/06/2004
  • ÉditeurSociété Mathématique de France

Résumé

Let Fq denote the finite field of order q (a power of a prime p), let X be a smooth scheme over a field k containing Fq and let A be a finite Fq-algebra. We study the relationship between constructible A-sheaves on the etale site of X, and a certain class of quasi-coherent OxOFq A-modules equipped with a "unit" Frobenius structure. We show that the two corresponding derived categories are anti-equivalent as triangulated categories, and that this anti-equivalence is compatible with direct and inverse images, tensor products, and certain other operations.
We also obtain analogous results relating complexes of constructible Z/pnZ-sheaves on smooth Wn(k)-schemes, and complexes of Berthelot's arithmetic D-modules, equipped with a unit Frobenius.
Let Fq denote the finite field of order q (a power of a prime p), let X be a smooth scheme over a field k containing Fq and let A be a finite Fq-algebra. We study the relationship between constructible A-sheaves on the etale site of X, and a certain class of quasi-coherent OxOFq A-modules equipped with a "unit" Frobenius structure. We show that the two corresponding derived categories are anti-equivalent as triangulated categories, and that this anti-equivalence is compatible with direct and inverse images, tensor products, and certain other operations.
We also obtain analogous results relating complexes of constructible Z/pnZ-sheaves on smooth Wn(k)-schemes, and complexes of Berthelot's arithmetic D-modules, equipped with a unit Frobenius.