The Statistical Mechanics of irreversible Phenomena

Par : Pierre Gaspard
  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Nombre de pages663
  • PrésentationRelié
  • FormatGrand Format
  • Poids1.405 kg
  • Dimensions17,5 cm × 25,0 cm × 3,5 cm
  • ISBN978-1-108-47372-9
  • EAN9781108473729
  • Date de parution01/11/2022
  • ÉditeurCambridge University Press

Résumé

This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium but extends to fully nonlinear regimes.
These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry, and biological physics.
This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium but extends to fully nonlinear regimes.
These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry, and biological physics.