Mathématiques d'école. Nombres, mesures et géométrie
2e édition revue et corrigée
Par : Formats :
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages402
- PrésentationBroché
- Poids0.665 kg
- Dimensions15,2 cm × 22,8 cm × 2,0 cm
- ISBN978-2-84225-158-1
- EAN9782842251581
- Date de parution30/11/2011
- Collectionenseignement des mathématiques
- ÉditeurCassini
Résumé
Les mathématiques d'école dont nous parle Daniel Perrin sont
celles de tout le monde : nombres, géométrie, aires, volumes.
Nous sommes familiers avec ces notions depuis notre plus
tendre enfance, et pourtant elles présentent des difficultés
inattendues dès qu'on veut les cerner d'un peu plus près. Cela
n'avait pas échappé aux Grecs de l'Antiquité, qui s'étaient
attachés à donner de ces notions des définitions précises, et qui
en avaient établi les propriétés avec un souci de rigueur qui
nous déconcerte parfois aujourd'hui.
Mais ils le savaient : sinon, gare au paradoxe ! Ces difficultés, bien sûr, doivent être soigneusement cachées aux élèves de l'école élémentaire et du collège, mais pas à leurs maîtres qui doivent savoir si, oui ou non, 0,999… = 1 (la question leur est souvent posée), ou pourquoi le nombre n qui intervient dans le périmètre du cercle est aussi celui qui figure dans l'aire du disque. Les notions premières, celles que chaque enseignant doit maîtriser, sont donc ici justifiées, expliquées, commentées dans un exposé agréable (les démonstrations un peu arides sont reportées en annexe) et qui ne s'écarte jamais du terrain très concret choisi au départ.
Mais les mathématiques ne se limitent pas à cette exigence de rigueur intellectuelle. Le plaisir de la recherche et la joie de la découverte en sont des composantes essentielles. Partant d'un niveau élémentaire (les mathématiques du baccalauréat scientifique), le livre de Daniel Perrin nous entraîne très loin dans la redécouverte des nombres et de la géométrie. On y rencontre les mystères des nombres premiers ou de l'écriture décimale des fractions, on y explique la beauté des constructions à la règle et au compas, ou les secrets des découpages des polygones, on y découvre les patrons des polyèdres ou la merveilleuse formule d'Euler.
Le lecteur pourra satisfaire son goût de la recherche en se confrontant à plus de 200 exercices, tous passionnants, tous corrigés, et à une cinquantaine de problèmes. Né d'un cours pour les futurs professeurs d'école (dans le cadre de la licence pluridisciplinaire d'Orsay), ce livre s'adresse aussi aux professeurs du second degré et à tous les étudiants en mathématiques.
Mais ils le savaient : sinon, gare au paradoxe ! Ces difficultés, bien sûr, doivent être soigneusement cachées aux élèves de l'école élémentaire et du collège, mais pas à leurs maîtres qui doivent savoir si, oui ou non, 0,999… = 1 (la question leur est souvent posée), ou pourquoi le nombre n qui intervient dans le périmètre du cercle est aussi celui qui figure dans l'aire du disque. Les notions premières, celles que chaque enseignant doit maîtriser, sont donc ici justifiées, expliquées, commentées dans un exposé agréable (les démonstrations un peu arides sont reportées en annexe) et qui ne s'écarte jamais du terrain très concret choisi au départ.
Mais les mathématiques ne se limitent pas à cette exigence de rigueur intellectuelle. Le plaisir de la recherche et la joie de la découverte en sont des composantes essentielles. Partant d'un niveau élémentaire (les mathématiques du baccalauréat scientifique), le livre de Daniel Perrin nous entraîne très loin dans la redécouverte des nombres et de la géométrie. On y rencontre les mystères des nombres premiers ou de l'écriture décimale des fractions, on y explique la beauté des constructions à la règle et au compas, ou les secrets des découpages des polygones, on y découvre les patrons des polyèdres ou la merveilleuse formule d'Euler.
Le lecteur pourra satisfaire son goût de la recherche en se confrontant à plus de 200 exercices, tous passionnants, tous corrigés, et à une cinquantaine de problèmes. Né d'un cours pour les futurs professeurs d'école (dans le cadre de la licence pluridisciplinaire d'Orsay), ce livre s'adresse aussi aux professeurs du second degré et à tous les étudiants en mathématiques.
Les mathématiques d'école dont nous parle Daniel Perrin sont
celles de tout le monde : nombres, géométrie, aires, volumes.
Nous sommes familiers avec ces notions depuis notre plus
tendre enfance, et pourtant elles présentent des difficultés
inattendues dès qu'on veut les cerner d'un peu plus près. Cela
n'avait pas échappé aux Grecs de l'Antiquité, qui s'étaient
attachés à donner de ces notions des définitions précises, et qui
en avaient établi les propriétés avec un souci de rigueur qui
nous déconcerte parfois aujourd'hui.
Mais ils le savaient : sinon, gare au paradoxe ! Ces difficultés, bien sûr, doivent être soigneusement cachées aux élèves de l'école élémentaire et du collège, mais pas à leurs maîtres qui doivent savoir si, oui ou non, 0,999… = 1 (la question leur est souvent posée), ou pourquoi le nombre n qui intervient dans le périmètre du cercle est aussi celui qui figure dans l'aire du disque. Les notions premières, celles que chaque enseignant doit maîtriser, sont donc ici justifiées, expliquées, commentées dans un exposé agréable (les démonstrations un peu arides sont reportées en annexe) et qui ne s'écarte jamais du terrain très concret choisi au départ.
Mais les mathématiques ne se limitent pas à cette exigence de rigueur intellectuelle. Le plaisir de la recherche et la joie de la découverte en sont des composantes essentielles. Partant d'un niveau élémentaire (les mathématiques du baccalauréat scientifique), le livre de Daniel Perrin nous entraîne très loin dans la redécouverte des nombres et de la géométrie. On y rencontre les mystères des nombres premiers ou de l'écriture décimale des fractions, on y explique la beauté des constructions à la règle et au compas, ou les secrets des découpages des polygones, on y découvre les patrons des polyèdres ou la merveilleuse formule d'Euler.
Le lecteur pourra satisfaire son goût de la recherche en se confrontant à plus de 200 exercices, tous passionnants, tous corrigés, et à une cinquantaine de problèmes. Né d'un cours pour les futurs professeurs d'école (dans le cadre de la licence pluridisciplinaire d'Orsay), ce livre s'adresse aussi aux professeurs du second degré et à tous les étudiants en mathématiques.
Mais ils le savaient : sinon, gare au paradoxe ! Ces difficultés, bien sûr, doivent être soigneusement cachées aux élèves de l'école élémentaire et du collège, mais pas à leurs maîtres qui doivent savoir si, oui ou non, 0,999… = 1 (la question leur est souvent posée), ou pourquoi le nombre n qui intervient dans le périmètre du cercle est aussi celui qui figure dans l'aire du disque. Les notions premières, celles que chaque enseignant doit maîtriser, sont donc ici justifiées, expliquées, commentées dans un exposé agréable (les démonstrations un peu arides sont reportées en annexe) et qui ne s'écarte jamais du terrain très concret choisi au départ.
Mais les mathématiques ne se limitent pas à cette exigence de rigueur intellectuelle. Le plaisir de la recherche et la joie de la découverte en sont des composantes essentielles. Partant d'un niveau élémentaire (les mathématiques du baccalauréat scientifique), le livre de Daniel Perrin nous entraîne très loin dans la redécouverte des nombres et de la géométrie. On y rencontre les mystères des nombres premiers ou de l'écriture décimale des fractions, on y explique la beauté des constructions à la règle et au compas, ou les secrets des découpages des polygones, on y découvre les patrons des polyèdres ou la merveilleuse formule d'Euler.
Le lecteur pourra satisfaire son goût de la recherche en se confrontant à plus de 200 exercices, tous passionnants, tous corrigés, et à une cinquantaine de problèmes. Né d'un cours pour les futurs professeurs d'école (dans le cadre de la licence pluridisciplinaire d'Orsay), ce livre s'adresse aussi aux professeurs du second degré et à tous les étudiants en mathématiques.