Le spectre des surfaces hyperboliques

Par : Nicolas Bergeron

Formats :

  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages338
  • PrésentationBroché
  • Poids0.534 kg
  • Dimensions15,5 cm × 23,0 cm × 2,0 cm
  • ISBN978-2-7598-0564-8
  • EAN9782759805648
  • Date de parution08/09/2011
  • CollectionSavoirs actuels
  • ÉditeurEDP Sciences

Résumé

Cet ouvrage est une introduction à la théorie spectrale du laplacien sur les surfaces hyperboliques (de courbure -1), compactes ou d'aire finie. Pour certaines de ces surfaces, dites "surfaces hyperboliques arithmétiques", les fonctions propres sont des objets de nature arithmétique et des outils d'analyse sont employés conjointement à des méthodes puissantes de théorie des nombres pour les étudier.
Après une introduction à la géométrie hyperbolique des surfaces insistant sur celles qui sont arithmétiques, puis une introduction aux méthodes d'analyse spectrale de l'opérateur de Laplace sur celles-ci, l'auteur développe l'analogie géométrie (géodésiques fermées) - arithmétique (nombres premiers) en démontrant la formule des traces de Selberg. Outre des applications importantes à l'arithmétique, l'auteur propose des applications à la statistique spectrale de l'opérateur de Laplace et à la propriété d'unique ergodicité quantique (théorème d'unique ergodicité quantique arithmétique, récemment démontré par Elon Lindenstrauss).
L'ouvrage, issu de plusieurs cours de M2 à Orsay et à l'Université Pierre et Marie Curie, permet au lecteur de parcourir un champ mathématique classique et d'être conduit vers des domaines de recherche très actifs.
Cet ouvrage est une introduction à la théorie spectrale du laplacien sur les surfaces hyperboliques (de courbure -1), compactes ou d'aire finie. Pour certaines de ces surfaces, dites "surfaces hyperboliques arithmétiques", les fonctions propres sont des objets de nature arithmétique et des outils d'analyse sont employés conjointement à des méthodes puissantes de théorie des nombres pour les étudier.
Après une introduction à la géométrie hyperbolique des surfaces insistant sur celles qui sont arithmétiques, puis une introduction aux méthodes d'analyse spectrale de l'opérateur de Laplace sur celles-ci, l'auteur développe l'analogie géométrie (géodésiques fermées) - arithmétique (nombres premiers) en démontrant la formule des traces de Selberg. Outre des applications importantes à l'arithmétique, l'auteur propose des applications à la statistique spectrale de l'opérateur de Laplace et à la propriété d'unique ergodicité quantique (théorème d'unique ergodicité quantique arithmétique, récemment démontré par Elon Lindenstrauss).
L'ouvrage, issu de plusieurs cours de M2 à Orsay et à l'Université Pierre et Marie Curie, permet au lecteur de parcourir un champ mathématique classique et d'être conduit vers des domaines de recherche très actifs.
Le Valoys royal
Nicolas Bergeron, L. Plessier
E-book
3,49 €