La géométrie de la relativité restreinte. Niveau L3-M
Par :Formats :
- Paiement en ligne :
- Livraison à domicile ou en point Mondial Relay indisponible
- Retrait Click and Collect en magasin gratuit
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages172
- PrésentationBroché
- Poids0.33 kg
- Dimensions16,5 cm × 24,0 cm × 1,3 cm
- ISBN978-2-7298-3902-4
- EAN9782729839024
- Date de parution09/09/2008
- CollectionPhysique-LMD
- ÉditeurEllipses
Résumé
L'ouvrage s'adresse aux étudiants en physique et en mathématiques. Il montre l'intérêt de la géométrie pour comprendre la relativité restreinte, conséquence de l'invariance des équations de Maxwell et de la constance de la vitesse de la lumière. L'espace-temps se trouve muni d'une structure géométrique et d'une interprétation physique : à tout observateur sont associés son temps propre et son espace physique propre où se déroulent les phénomènes le concernant. On est ainsi conduit à une approche naturelle de la relativité restreinte, en retrouvant les situations usuelles, les précisant et les complétant. Le groupe de Lorentz et son algèbre de Lie sont ensuite étudiés matriciellement, puis par l'algèbre de Pauli. Les quaternions sont abordés en annexe pour leurs applications en géométrie et cinématique. Une étude originale de l'algèbre engendrée par une matrice permet de traiter simplement, de manière cohérente, diverses questions que l'on rencontre souvent dans les ouvrages. La géométrie, dont le rôle est ainsi mis en évidence, devrait être un lien trop souvent distendu entre mathématiques et physique
L'ouvrage s'adresse aux étudiants en physique et en mathématiques. Il montre l'intérêt de la géométrie pour comprendre la relativité restreinte, conséquence de l'invariance des équations de Maxwell et de la constance de la vitesse de la lumière. L'espace-temps se trouve muni d'une structure géométrique et d'une interprétation physique : à tout observateur sont associés son temps propre et son espace physique propre où se déroulent les phénomènes le concernant. On est ainsi conduit à une approche naturelle de la relativité restreinte, en retrouvant les situations usuelles, les précisant et les complétant. Le groupe de Lorentz et son algèbre de Lie sont ensuite étudiés matriciellement, puis par l'algèbre de Pauli. Les quaternions sont abordés en annexe pour leurs applications en géométrie et cinématique. Une étude originale de l'algèbre engendrée par une matrice permet de traiter simplement, de manière cohérente, diverses questions que l'on rencontre souvent dans les ouvrages. La géométrie, dont le rôle est ainsi mis en évidence, devrait être un lien trop souvent distendu entre mathématiques et physique