Knots and Feynman Diagrams (Broché)

  • Cambridge University Press

  • Paru le : 30/06/2000
Note moyenne : |
Ce produit n'a pas encore été évalué. Soyez le premier !
Donnez votre avis !
This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field... > Lire la suite
38,00 €
Neuf - Expédié sous 9 à 14 jours
  • ou
    Livré chez vous
    entre le 3 février et le 8 février
ou
Votre note
This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalisation, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included. Dealing with material at perhaps the most productive interface between mathematics and physics, the book will not only bc of considerable interest to theoretical and particle physicists, but also to many mathematicians.
    • Perturbative quantum field theory
    • The Hopf algebra structure of renormalisation
    • Rationality: no knots, no transcendentals
    • The simplest topics link diagrams
    • Knots to number: (2,2n-3) torus knots and (2n-3)
    • One-loop words
    • Euler-Zagier sums
    • Knots and transcendentals
    • The four-term relation
    • Hopf algebras, non-communicative geometry, and what else?
Dirk Kreimer - .
Knots and Feynman Diagrams
38,00 €
Haut de page
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK