Le Caire, Egypte, 60's. Tarek annonce, sans conviction, à son père qu'il veut devenir médecin comme lui. Montréal, Canada, 80's.
Tarek, médecin réputé, revient sur son exil. Amour impossible, devoir de filiation, rébellion contre une société archaïque, vent de liberté qui laisse présager un changement.
Une merveille à lire d'urgence!
This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field...
Lire la suite
38,00 €
Neuf
Expédié sous 2 à 4 semaines
Livré chez vous entre le 22 décembre et le 9 janvier
En librairie
Résumé
This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory.
Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalisation, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included.
Dealing with material at perhaps the most productive interface between mathematics and physics, the book will not only bc of considerable interest to theoretical and particle physicists, but also to many mathematicians.
Sommaire
Perturbative quantum field theory
The Hopf algebra structure of renormalisation
Rationality: no knots, no transcendentals
The simplest topics link diagrams
Knots to number: (2,2n-3) torus knots and (2n-3)
One-loop words
Euler-Zagier sums
Knots and transcendentals
The four-term relation
Hopf algebras, non-communicative geometry, and what else?