Introduction to topological manifolds (Relié)

  • Springer

  • Paru le : 25/08/2000
Note moyenne : |
Ce produit n'a pas encore été évalué. Soyez le premier !
Donnez votre avis !
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further... > Lire la suite
79,88 €
Neuf - Expédié sous 2 à 4 semaines
  • ou
    Livré chez vous
    entre le 7 février et le 21 février
Votre note
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. A course on manifolds differs from most other introductory mathematics graduate courses in that the subject matter is often completely unfamiliar. Unlike algebra and analysis, which all math majors see as undergraduates, manifolds enter the curriculum much later. It is even possible to get through an entire undergraduate mathematics education without ever hearing the word "manifold". Yet manifolds are part of the basic vocabulary of modern mathematics, and students need to know them as intimately as they know the integers, the real numbers, Euclidean spaces, groups, rings, and fields. In his beautifully conceived introduction, the author motivates the technical developments to follow by explaining some of the roles manifolds play in diverse branches of mathematics and physics. Then he goes on to introduce the basics of general topology and continues with the fundamental group, covering spaces, and elementary homology theory. Manifolds are introduced early and used as the main examples throughout.
    • Topological spaces
    • New spaces from old
    • Connectedness and compactness
    • Simplicial complexes
    • Curves and surfaces
    • Homotopy and the fundamental group
    • Circles and spheres
    • Some group theory
    • The Seifert-Van Kampen theorem
    • Covering spaces
    • Classification of coverings
    • Homology
  • Date de parution : 25/08/2000
  • Editeur : Springer
  • Collection : Graduate Texts in Mathematics
  • ISBN : 0-387-98759-2
  • EAN : 9780387987590
  • Présentation : Relié
  • Nb. de pages : 385 pages
  • Poids : 0.705 Kg
  • Dimensions : 15,9 cm × 24,1 cm × 2,5 cm

Biographie de John-M Lee

John M. Lee is currently Professor of Mathematics at the University of Washington in Seattle. In addition to pursuing research in differential geometry and partial differential equations, he has been teaching undergraduate and graduate courses on manifolds at U.W. and Harvard University for more than fifteen years.

Nos avis clients sur

Avis Trustpilot
John-M Lee - Introduction to topological manifolds.
Introduction to topological manifolds
79,88 €
Haut de page
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK