À paraître

Introduction au calcul tensoriel - 3e éd.. Applications à la physique

Par : Claude Semay, Bernard Silvestre-Brac

Formats :

Précommande en ligne
Votre colis est préparé et expédié le jour de la sortie de cet article, hors dimanches et jours fériés, dans la limite des stocks disponibles.
  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages272
  • PrésentationBroché
  • Dimensions17,0 cm × 24,0 cm × 0,0 cm
  • ISBN978-2-10-088576-3
  • EAN9782100885763
  • Date de parution08/10/2025
  • CollectionSciences Sup
  • ÉditeurDunod

Résumé

Les scalaires et les vecteurs ne peuvent pas représenter toutes les grandeurs physiques ; c'est pourquoi de nouvelles entités mathématiques ont été développées : les tenseurs. Le calcul tensoriel, qui manipule ces grandeurs, est employé, entre autres, en mécanique, en théorie des déformations, en relativité restreinte et générale, ainsi qu'en électromagnétisme. Dans la première partie de l'ouvrage, les tenseurs sont construits et leurs propriétés sont présentées en toute généralité.
La deuxième partie est consacrée aux systèmes de coordonnées curvilignes dans l'espace de la géométrie ordinaire et aux procédures d'intégration dans ces systèmes de coordonnées. De plus, la technique du calcul matriciel est développée car elle facilite les manipulations des tableaux de nombres représentant les tenseurs. De nombreux exercices d'application sont proposés avec leurs solutions.
Les scalaires et les vecteurs ne peuvent pas représenter toutes les grandeurs physiques ; c'est pourquoi de nouvelles entités mathématiques ont été développées : les tenseurs. Le calcul tensoriel, qui manipule ces grandeurs, est employé, entre autres, en mécanique, en théorie des déformations, en relativité restreinte et générale, ainsi qu'en électromagnétisme. Dans la première partie de l'ouvrage, les tenseurs sont construits et leurs propriétés sont présentées en toute généralité.
La deuxième partie est consacrée aux systèmes de coordonnées curvilignes dans l'espace de la géométrie ordinaire et aux procédures d'intégration dans ces systèmes de coordonnées. De plus, la technique du calcul matriciel est développée car elle facilite les manipulations des tableaux de nombres représentant les tenseurs. De nombreux exercices d'application sont proposés avec leurs solutions.