Groupes, algèbres et géométrie Tome 2. Groupes, algèbres et géométrie
Par : ,Formats :
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages784
- PrésentationBroché
- Poids1.7 kg
- Dimensions1,8 cm × 2,6 cm × 0,4 cm
- ISBN2-7298-4594-1
- EAN9782729845940
- Date de parution01/01/1995
- ÉditeurEllipses
Résumé
Ce tome 2 est consacré à la pénétration des méthodes algébriques en Géométrie. Jean-Marie Arnaudiès et José Bertin tiennent les promesses faites non seulement aux candidats aux Agrégations externe et interne de Mathématiques, mais au-delà, à tous ceux que passionnent cette science ou qui s'y destinent, comme les étudiants de deuxième et troisième cycle des Universités. Les auteurs ont bâti ce tome 2 autour de deux théories majeures : la cristallographie, et la représentation linéaire des groupes finis, qui mettent en oeuvre tous les outils algébriques progressivement introduits : produit tensoriel, groupes topolo-giques, modules sur les anneaux principaux, réseaux, algèbres semi-simples...
De nombreux exemples, dont beaucoup non-évidents, appuient le texte. En outre, les auteurs démontrent cinq grands théorèmes qui ne sont que très rarement mis à la disposition d'un Public aussi large : les deux théorèmes de Bieberbach en cristallographie (le topologique, et celui de finitude), les théorèmes de finitude de Hermite-Minkowski et de Jordan-Zassenhaus, et enfin le théorème de Frobenius qui donne le calcul explicite des caractères irréductibles des groupes symétriques ; ce dernier théorème couronne une étude minutieuse et exhaustive des représentations des groupes symétriques.
Ce livre contient notamment : 329 théorèmes, 218 propositions, 115 corollaires et 65 lemmes, avec leur démonstration ; 161 définitions et 106 exemples développés. Il est illustré de 36 figures.
De nombreux exemples, dont beaucoup non-évidents, appuient le texte. En outre, les auteurs démontrent cinq grands théorèmes qui ne sont que très rarement mis à la disposition d'un Public aussi large : les deux théorèmes de Bieberbach en cristallographie (le topologique, et celui de finitude), les théorèmes de finitude de Hermite-Minkowski et de Jordan-Zassenhaus, et enfin le théorème de Frobenius qui donne le calcul explicite des caractères irréductibles des groupes symétriques ; ce dernier théorème couronne une étude minutieuse et exhaustive des représentations des groupes symétriques.
Ce livre contient notamment : 329 théorèmes, 218 propositions, 115 corollaires et 65 lemmes, avec leur démonstration ; 161 définitions et 106 exemples développés. Il est illustré de 36 figures.
Ce tome 2 est consacré à la pénétration des méthodes algébriques en Géométrie. Jean-Marie Arnaudiès et José Bertin tiennent les promesses faites non seulement aux candidats aux Agrégations externe et interne de Mathématiques, mais au-delà, à tous ceux que passionnent cette science ou qui s'y destinent, comme les étudiants de deuxième et troisième cycle des Universités. Les auteurs ont bâti ce tome 2 autour de deux théories majeures : la cristallographie, et la représentation linéaire des groupes finis, qui mettent en oeuvre tous les outils algébriques progressivement introduits : produit tensoriel, groupes topolo-giques, modules sur les anneaux principaux, réseaux, algèbres semi-simples...
De nombreux exemples, dont beaucoup non-évidents, appuient le texte. En outre, les auteurs démontrent cinq grands théorèmes qui ne sont que très rarement mis à la disposition d'un Public aussi large : les deux théorèmes de Bieberbach en cristallographie (le topologique, et celui de finitude), les théorèmes de finitude de Hermite-Minkowski et de Jordan-Zassenhaus, et enfin le théorème de Frobenius qui donne le calcul explicite des caractères irréductibles des groupes symétriques ; ce dernier théorème couronne une étude minutieuse et exhaustive des représentations des groupes symétriques.
Ce livre contient notamment : 329 théorèmes, 218 propositions, 115 corollaires et 65 lemmes, avec leur démonstration ; 161 définitions et 106 exemples développés. Il est illustré de 36 figures.
De nombreux exemples, dont beaucoup non-évidents, appuient le texte. En outre, les auteurs démontrent cinq grands théorèmes qui ne sont que très rarement mis à la disposition d'un Public aussi large : les deux théorèmes de Bieberbach en cristallographie (le topologique, et celui de finitude), les théorèmes de finitude de Hermite-Minkowski et de Jordan-Zassenhaus, et enfin le théorème de Frobenius qui donne le calcul explicite des caractères irréductibles des groupes symétriques ; ce dernier théorème couronne une étude minutieuse et exhaustive des représentations des groupes symétriques.
Ce livre contient notamment : 329 théorèmes, 218 propositions, 115 corollaires et 65 lemmes, avec leur démonstration ; 161 définitions et 106 exemples développés. Il est illustré de 36 figures.