Géométrie des pavages. De la conception à la réalisation sur ordinateur
Par :Formats :
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages413
- PrésentationBroché
- FormatGrand Format
- Poids0.635 kg
- Dimensions15,6 cm × 23,4 cm × 2,0 cm
- ISBN978-2-7462-4503-7
- EAN9782746245037
- Date de parution23/02/2013
- ÉditeurHermes Science Publications
Résumé
Des fresques de l'Antiquité romaine aux pavages de Durer et Kepler, des mosaïques de l'art arabo-persan aux pavages de Penrose, l'art décoratif est illuminé de motifs géométriques foisonnants. Soumis à des régularités lancinantes ou à des symétries kaléidoscopiques, ils forment un trait d'union privilégié entre l'art et les mathématiques. S'adressant aux enseignants et étudiants en mathématiques ou informatique comme aux amateurs d'art, Géométrie des pavages propose différentes clés permettant de mieux comprendre la beauté cachée des formes, mais également de devenir les artisans constructeurs des pavages sur ordinateur.
Il détaille les trois types de conception géométrique (surface plane, sphérique ou géométrie non euclidienne hyperbolique) et les concepts théoriques qui les fondent. La compréhension des mécanismes internes de la fabrication des pavages permet ainsi d'accéder aux programmes de réalisation sur ordinateur, donnant accès à des visualisations instantanées et à un grand nombre de variations possibles.
Il détaille les trois types de conception géométrique (surface plane, sphérique ou géométrie non euclidienne hyperbolique) et les concepts théoriques qui les fondent. La compréhension des mécanismes internes de la fabrication des pavages permet ainsi d'accéder aux programmes de réalisation sur ordinateur, donnant accès à des visualisations instantanées et à un grand nombre de variations possibles.
Des fresques de l'Antiquité romaine aux pavages de Durer et Kepler, des mosaïques de l'art arabo-persan aux pavages de Penrose, l'art décoratif est illuminé de motifs géométriques foisonnants. Soumis à des régularités lancinantes ou à des symétries kaléidoscopiques, ils forment un trait d'union privilégié entre l'art et les mathématiques. S'adressant aux enseignants et étudiants en mathématiques ou informatique comme aux amateurs d'art, Géométrie des pavages propose différentes clés permettant de mieux comprendre la beauté cachée des formes, mais également de devenir les artisans constructeurs des pavages sur ordinateur.
Il détaille les trois types de conception géométrique (surface plane, sphérique ou géométrie non euclidienne hyperbolique) et les concepts théoriques qui les fondent. La compréhension des mécanismes internes de la fabrication des pavages permet ainsi d'accéder aux programmes de réalisation sur ordinateur, donnant accès à des visualisations instantanées et à un grand nombre de variations possibles.
Il détaille les trois types de conception géométrique (surface plane, sphérique ou géométrie non euclidienne hyperbolique) et les concepts théoriques qui les fondent. La compréhension des mécanismes internes de la fabrication des pavages permet ainsi d'accéder aux programmes de réalisation sur ordinateur, donnant accès à des visualisations instantanées et à un grand nombre de variations possibles.