Elliptic Curves (Relié)

2e édition

  • Springer

  • Paru le : 01/01/2004
Note moyenne : |
Ce produit n'a pas encore été évalué. Soyez le premier !
Donnez votre avis !
This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out... > Lire la suite
71,64 €
Neuf - Expédié sous 3 à 6 jours
  • ou
    Livré chez vous
    entre le 30 septembre et le 4 octobre
Votre note
This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out of Tate's Haverford Lectures, cover the arithmetic theory of elliptic curves over the field of rational numbers. This theory is then recast into the powerful and more general language of Galois cohomology and descent theory. An analytic section of the book includes such topics as elliptic functions, theta functions, and modular functions. Next, the book discusses the theory of elliptic curves over finite and local fields and provides a survey of results in the global arithmetic theory, especially those related to the conjecture of Birch and Swinnerton-Dyer. This new edition contains three new chapters. The first is an outline of Wiles's proof of Fermat's Last Theorem. The two additional chapters concern higher-dimensional analogues of elliptic curves, including K3 surfaces and Calabi-Yau manifolds. Three new appendices explore recent applications of elliptic curves and their generalizations. The first, written by Stefan Theisen, examines the role of Calabi-Yau manifolds and elliptic curves in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory. The third appendix explains the rote of elliptic curves in homotopy theory.
    • Introduction to Rational Points on Plane Curves
    • Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve
    • Plane Algebraic Curves
    • Appendix to Chapter 2: Factorial Rings and Elimination Theory
    • Elliptic Curves and their Isomorphisms
    • Families of Elliptic Curves and Geometric Properties of Torsion Points
    • Reduction mod p and Torsion Points
    • Proof of Mordell's Finite Generation Theorem
    • Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields
    • Descent and Galois Cohomology
    • Elliptic and Hypergeometric Functions
    • Theta Functions
    • Modular Functions
    • Endomorphisms of Elliptic Curves
    • Elliptic Curves over Finite Fields
    • Elliptic Curves over Local Fields
    • Elliptic Curves over Global Fields and l-Adic Representations
    • L-fonction of an Elliptic Curve and Its Analytic Continuation
    • Remarks on the Birch and Swinnerton-Dyer Conjoncture
    • Remarks on the Modular Elliptic Curves Conjoncture and Fermat's Last Theorem
    • Higher Dimensional Analogs of Elliptic Curves: Calabi-Yau Varieties
    • Families of Elliptic Curves
  • Date de parution : 01/01/2004
  • Editeur : Springer
  • Collection : Graduate Texts in Mathematics
  • ISBN : 0-387-95490-2
  • EAN : 9780387954905
  • Présentation : Relié
  • Nb. de pages : 487 pages
  • Poids : 0.83 Kg
  • Dimensions : 16,0 cm × 24,0 cm × 2,5 cm

Nos avis clients sur decitre.fr

Avis Trustpilot
Dale Husemöller - Elliptic Curves.
Elliptic Curves 2e édition
71,64 €
Haut de page
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK

Ne partez pas tout de suite...

Inscription newsletter