Crystals, Defects And Microstructures. Modeling Across Scales

Par : Rob Phillips

Formats :

  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Nombre de pages780
  • PrésentationBroché
  • Poids1.605 kg
  • Dimensions17,5 cm × 25,0 cm × 3,4 cm
  • ISBN0-521-79357-2
  • EAN9780521793575
  • Date de parution14/04/2001
  • ÉditeurCambridge University Press

Résumé

Materials science has emerged as one of the central pillars of the modern physical sciences and engineering, and is now even beginning to claim a role in the biological sciences. A central tenet in the analysis of materials is the structure-property paradigm, which proposes a direct connection between the geometric structures within a material and its properties. The increasing power of high-speed computation has had a major impact on theoretical materials science and has permitted the systematic examination of this connection between structure and properties. In this textbook, Rob Phillips examines the various methods that have been used in the study of crystals, defects and microstructures and that have made such computations possible. The author presents many of the key general principles used in the modeling of materials, and punctuates the text with real case studies drawn from recent research. A second key theme is the presentation of recent efforts that have been developed to treat problems involving either multiple spatial or temporal scales simultaneously. This text is intended for graduate students and researchers in science and engineering with an interest in the theoretical constructs that have been devised to undertake the study of materials.
Materials science has emerged as one of the central pillars of the modern physical sciences and engineering, and is now even beginning to claim a role in the biological sciences. A central tenet in the analysis of materials is the structure-property paradigm, which proposes a direct connection between the geometric structures within a material and its properties. The increasing power of high-speed computation has had a major impact on theoretical materials science and has permitted the systematic examination of this connection between structure and properties. In this textbook, Rob Phillips examines the various methods that have been used in the study of crystals, defects and microstructures and that have made such computations possible. The author presents many of the key general principles used in the modeling of materials, and punctuates the text with real case studies drawn from recent research. A second key theme is the presentation of recent efforts that have been developed to treat problems involving either multiple spatial or temporal scales simultaneously. This text is intended for graduate students and researchers in science and engineering with an interest in the theoretical constructs that have been devised to undertake the study of materials.