C.Q.F.D.. 21 façons de prouver en mathématiques

Par : Yan Pradeau

Disponible d'occasion :

  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages383
  • PrésentationBroché
  • FormatGrand Format
  • Poids0.41 kg
  • Dimensions14,5 cm × 22,0 cm × 2,5 cm
  • ISBN978-2-08-149963-8
  • EAN9782081499638
  • Date de parution26/02/2020
  • ÉditeurFlammarion
  • ContributeurYves Benjamin

Résumé

Les mathématiques semblent le champ le plus solide du savoir scientifique : "C'est prouvé par a + b." A cette certitude correspondent pourtant non pas une, mais d'innombrables façons de démontrer — on compte par exemple plus de 300 preuves du théorème de Pythagore : par l'absurde, par contre-exemple, par récurrence, etc. Une redondance d'autant plus troublante que certaines sont jugées plus solides que d'autres...
Qu'est-ce que prouver et comment s'y prend-on ? Comment lever les paradoxes de l'infini ? Pourquoi faut-il des axiomes ? Quel crédit accorder à un théorème établi par ordinateur ? Dans cet essai, Yan Pradeau lève le voile sur une activité essentielle des mathématiciens. Une fois n'est pas coutume, il détaille non leurs résultats, mais les chemins qui y mènent. Quand on sait depuis Gödel que tout ce qui est vrai n'est pas forcément prouvable, on mesure l'utilité de cet ouvrage !
Les mathématiques semblent le champ le plus solide du savoir scientifique : "C'est prouvé par a + b." A cette certitude correspondent pourtant non pas une, mais d'innombrables façons de démontrer — on compte par exemple plus de 300 preuves du théorème de Pythagore : par l'absurde, par contre-exemple, par récurrence, etc. Une redondance d'autant plus troublante que certaines sont jugées plus solides que d'autres...
Qu'est-ce que prouver et comment s'y prend-on ? Comment lever les paradoxes de l'infini ? Pourquoi faut-il des axiomes ? Quel crédit accorder à un théorème établi par ordinateur ? Dans cet essai, Yan Pradeau lève le voile sur une activité essentielle des mathématiciens. Une fois n'est pas coutume, il détaille non leurs résultats, mais les chemins qui y mènent. Quand on sait depuis Gödel que tout ce qui est vrai n'est pas forcément prouvable, on mesure l'utilité de cet ouvrage !