Analyse fonctionnelle. Cours et exercices corrigés, Licence, Master, Ecoles d’ingénieurs

Par : Mourad Choulli
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages202
  • PrésentationBroché
  • FormatGrand Format
  • Poids0.359 kg
  • Dimensions17,0 cm × 24,0 cm × 1,0 cm
  • ISBN978-2-8073-3492-2
  • EAN9782807334922
  • Date de parution09/02/2022
  • ÉditeurDe Boeck supérieur

Résumé

Toute l'Analyse fonctionnelle, avec cours et exercices intégralement corrigés, pour les étudiants en L3 et M1 de mathématiques ainsi que pour les élèves en 1re année des écoles d'ingénieurs. Ce manuel couvre l'ensemble du programme d'analyse fonctionnelle enseignée à l'université ainsi qu'en écoles d'ingénieur. Les prérequis sont minimaux : corps des réels et des complexes et connaissance minimale de la théorie des ensembles.
Chaque chapitre accueille une série d'exercices intégralement corrigés. De nombreux exemples sur les espaces vectoriels topologiques localement convexes viennent enrichir l'ensemble. Sommaire : 1. Exemples d'espaces normés - 2. Espaces métriques complets - 3. Eléments de topologie - 4. Valeurs d'adhérence - 5. Ensembles compacts - 6. Applications continues - 7. Topologie produit et topologie quotient - 8.
Topologies initiales et topologies finales - 9. Espaces connexes - 10. Applications linéaires continues - 11. Théorèmes associés aux fonctions continues - 12. Théorèmes fondamentaux relatifs aux espaces de Banach -13. Espaces séparables et espaces réflexifs - 14. Topologies faibles - 15. Espaces de Hilbert - 16 Exemples d'espaces vectoriels topologiques localement convexes - Bibliographie - Index
Toute l'Analyse fonctionnelle, avec cours et exercices intégralement corrigés, pour les étudiants en L3 et M1 de mathématiques ainsi que pour les élèves en 1re année des écoles d'ingénieurs. Ce manuel couvre l'ensemble du programme d'analyse fonctionnelle enseignée à l'université ainsi qu'en écoles d'ingénieur. Les prérequis sont minimaux : corps des réels et des complexes et connaissance minimale de la théorie des ensembles.
Chaque chapitre accueille une série d'exercices intégralement corrigés. De nombreux exemples sur les espaces vectoriels topologiques localement convexes viennent enrichir l'ensemble. Sommaire : 1. Exemples d'espaces normés - 2. Espaces métriques complets - 3. Eléments de topologie - 4. Valeurs d'adhérence - 5. Ensembles compacts - 6. Applications continues - 7. Topologie produit et topologie quotient - 8.
Topologies initiales et topologies finales - 9. Espaces connexes - 10. Applications linéaires continues - 11. Théorèmes associés aux fonctions continues - 12. Théorèmes fondamentaux relatifs aux espaces de Banach -13. Espaces séparables et espaces réflexifs - 14. Topologies faibles - 15. Espaces de Hilbert - 16 Exemples d'espaces vectoriels topologiques localement convexes - Bibliographie - Index
Analyse complexe
Mourad Choulli
Grand Format
25,00 €