A Framework for Unsupervised Learning of Dialogue Strategies
Par :Formats :
Actuellement indisponible
Cet article est actuellement indisponible, il ne peut pas être commandé sur notre site pour le moment. Nous vous invitons à vous inscrire à l'alerte disponibilité, vous recevrez un e-mail dès que cet ouvrage sera à nouveau disponible.
- Nombre de pages246
- PrésentationBroché
- Poids0.398 kg
- Dimensions16,0 cm × 24,0 cm × 1,3 cm
- ISBN2-930344-63-6
- EAN9782930344638
- Date de parution01/08/2005
- CollectionSimilar
- ÉditeurPresses Universitaires Louvain
Résumé
This book addresses the problems of spoken dialogue system design and especially automatic learning of optimal strategies for man-machine dialogues. Besides the description of the learning methods, this text proposes a framework for realistic simulation of human-machine dialogues based on probabilistic techniques, which allows automatic evaluation and unsupervised learning of dialogue strategies. This framework relies on stochastic modelling of modules composing spoken dialogue systems as well as on user modelling.
Special care has been taken to build models that can either be hand-tuned or learned from generic data.
Special care has been taken to build models that can either be hand-tuned or learned from generic data.
This book addresses the problems of spoken dialogue system design and especially automatic learning of optimal strategies for man-machine dialogues. Besides the description of the learning methods, this text proposes a framework for realistic simulation of human-machine dialogues based on probabilistic techniques, which allows automatic evaluation and unsupervised learning of dialogue strategies. This framework relies on stochastic modelling of modules composing spoken dialogue systems as well as on user modelling.
Special care has been taken to build models that can either be hand-tuned or learned from generic data.
Special care has been taken to build models that can either be hand-tuned or learned from generic data.