Think Bayes

Par : Allen B. Downey

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages210
  • FormatMulti-format
  • ISBN978-1-4919-4542-1
  • EAN9781491945421
  • Date de parution12/09/2013
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant ePub sans ...
  • ÉditeurO'Reilly Media

Résumé

If you know how to program with Python and also know a little about probability, you're ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and you'll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners.
Based on undergraduate classes taught by author Allen Downey, this book's computational approach helps you get a solid start. - Use your existing programming skills to learn and understand Bayesian statistics - Work with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testing - Get started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockey - Learn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome.
If you know how to program with Python and also know a little about probability, you're ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and you'll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners.
Based on undergraduate classes taught by author Allen Downey, this book's computational approach helps you get a solid start. - Use your existing programming skills to learn and understand Bayesian statistics - Work with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testing - Get started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockey - Learn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome.
Think Bayes
Allen B. Downey
30,00 €
Think Python
Allen B. Downey
37,00 €