Nouveauté

The Deep Learning Engineer's Handbook: From Fundamentals to Advanced Techniques with Scikit-Learn, Keras, and TensorFlow

Par : Aarav Joshi
Actuellement indisponible
Cet article est actuellement indisponible, il ne peut pas être commandé sur notre site pour le moment. Nous vous invitons à vous inscrire à l'alerte disponibilité, vous recevrez un e-mail dès que cet ouvrage sera à nouveau disponible.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8231335404
  • EAN9798231335404
  • Date de parution16/05/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurWalzone Press

Résumé

"The Deep Learning Engineer's Handbook: From Fundamentals to Advanced Techniques with Scikit-Learn, Keras, and TensorFlow" is a comprehensive guide designed for STEM professionals looking to master deep learning implementation. The book is structured to take readers from foundational concepts to advanced applications, covering essential neural network architectures, training methodologies, and deployment strategies.
This practical handbook features extensive code examples using popular frameworks like TensorFlow, Keras, and Scikit-Learn, enabling readers to build working models from scratch. The content progresses logically through machine learning fundamentals, convolutional neural networks, recurrent architectures, transformers, and generative models, culminating in production deployment techniques. What sets this handbook apart is its balance between theoretical understanding and practical implementation, with hands-on exercises that reinforce learning.
The book addresses both model development and operational concerns like monitoring, scaling, and maintaining deep learning systems in production environments. Perfect for engineers, data scientists, and researchers seeking to implement cutting-edge deep learning solutions, this handbook serves as both a learning resource and reference guide for building intelligent systems.
"The Deep Learning Engineer's Handbook: From Fundamentals to Advanced Techniques with Scikit-Learn, Keras, and TensorFlow" is a comprehensive guide designed for STEM professionals looking to master deep learning implementation. The book is structured to take readers from foundational concepts to advanced applications, covering essential neural network architectures, training methodologies, and deployment strategies.
This practical handbook features extensive code examples using popular frameworks like TensorFlow, Keras, and Scikit-Learn, enabling readers to build working models from scratch. The content progresses logically through machine learning fundamentals, convolutional neural networks, recurrent architectures, transformers, and generative models, culminating in production deployment techniques. What sets this handbook apart is its balance between theoretical understanding and practical implementation, with hands-on exercises that reinforce learning.
The book addresses both model development and operational concerns like monitoring, scaling, and maintaining deep learning systems in production environments. Perfect for engineers, data scientists, and researchers seeking to implement cutting-edge deep learning solutions, this handbook serves as both a learning resource and reference guide for building intelligent systems.