Systèmes dynamiques discrets non réguliers déterministes ou stochastiques. Applications aux modèles avec frottement ou impact
Par : , , , ,Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages532
- FormatPDF
- ISBN978-2-7462-8908-6
- EAN9782746289086
- Date de parution22/11/2012
- Copier CollerNon Autorisé
- Protection num.Digital Watermarking
- Taille18 Mo
- Infos supplémentairespdf
- ÉditeurHermes Science Publications
Résumé
Cet ouvrage présente différents modèles discrets en dynamique pour la modélisation de phénomènes mécaniques non linéaires liés au frottement ou à l'impact. Les sollicitations sont exposées dans un cadre déterministe et stochastique. Pour ce dernier, le cas de variétés de configuration euclidienne ou riemannienne est abordé. La difficulté réside dans le type d'équations différentielles non linéaires particulières utilisées.
Le cadre théorique ainsi que des schémas numériques sont détaillés pour chaque équation. Trois types de problèmes sont d'abord étudiés dans le cas particulier d'un solide à un degré de liberté : la force de frottement, la loi d'impact en déterministe et le frottement dans un cadre stochastique. Ensuite, de nombreux exemples sont commentés et fournissent, dans un cadre théorique ou applicatif, de nombreux modèles accompagnés de leurs schémas numériques.
Des rappels théoriques fondamentaux sont proposés ainsi que deux preuves complètes de convergence de schémas numériques dans le cas du frottement déterministe ou stochastique.
Le cadre théorique ainsi que des schémas numériques sont détaillés pour chaque équation. Trois types de problèmes sont d'abord étudiés dans le cas particulier d'un solide à un degré de liberté : la force de frottement, la loi d'impact en déterministe et le frottement dans un cadre stochastique. Ensuite, de nombreux exemples sont commentés et fournissent, dans un cadre théorique ou applicatif, de nombreux modèles accompagnés de leurs schémas numériques.
Des rappels théoriques fondamentaux sont proposés ainsi que deux preuves complètes de convergence de schémas numériques dans le cas du frottement déterministe ou stochastique.
Cet ouvrage présente différents modèles discrets en dynamique pour la modélisation de phénomènes mécaniques non linéaires liés au frottement ou à l'impact. Les sollicitations sont exposées dans un cadre déterministe et stochastique. Pour ce dernier, le cas de variétés de configuration euclidienne ou riemannienne est abordé. La difficulté réside dans le type d'équations différentielles non linéaires particulières utilisées.
Le cadre théorique ainsi que des schémas numériques sont détaillés pour chaque équation. Trois types de problèmes sont d'abord étudiés dans le cas particulier d'un solide à un degré de liberté : la force de frottement, la loi d'impact en déterministe et le frottement dans un cadre stochastique. Ensuite, de nombreux exemples sont commentés et fournissent, dans un cadre théorique ou applicatif, de nombreux modèles accompagnés de leurs schémas numériques.
Des rappels théoriques fondamentaux sont proposés ainsi que deux preuves complètes de convergence de schémas numériques dans le cas du frottement déterministe ou stochastique.
Le cadre théorique ainsi que des schémas numériques sont détaillés pour chaque équation. Trois types de problèmes sont d'abord étudiés dans le cas particulier d'un solide à un degré de liberté : la force de frottement, la loi d'impact en déterministe et le frottement dans un cadre stochastique. Ensuite, de nombreux exemples sont commentés et fournissent, dans un cadre théorique ou applicatif, de nombreux modèles accompagnés de leurs schémas numériques.
Des rappels théoriques fondamentaux sont proposés ainsi que deux preuves complètes de convergence de schémas numériques dans le cas du frottement déterministe ou stochastique.