Synthesis and biomedical applications of magnetic nanomaterials
Par : , ,Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages394
- FormatPDF
- ISBN978-2-7598-2715-2
- EAN9782759827152
- Date de parution15/02/2022
- Protection num.Digital Watermarking
- Taille445 Mo
- Infos supplémentairespdf
- ÉditeurEDP Sciences
Résumé
This book aims to address cutting-edge progress in the area of synthesis and biomedical applications of magnetic nanomaterials. It compiles a broad spectrum from fundamental principles to technological advances, from synthesis and modification to biomedical applications along with biocompatibility. The main topics include principles in nanomagnetism, technologies for magnetic nanomaterials fabrication, developments in their biomedical applications, and the challenges in the toxicity in clinical translation.
The first part introduced the principles of nanomagnetism and specific properties in magnetic nanomaterials. Then, some typical fabrication strategies in magnetic nanomaterials for controlled composition, morphologies and sizes are reviewed; and surface modification methods with better hydrophilcity and biocompatibility are presented. Next, magnetic nanomaterials-based applications in biomedical field are highlighted in detail, mainly including magnetic resonance image, magnetic hyperthermia, cancer therapy, multi-mode imaging, imaging-guided therapy and manipulate biological objects.
Finally, biocompatibility issues caused by magnetic nanomaterials are also overviewed.
The first part introduced the principles of nanomagnetism and specific properties in magnetic nanomaterials. Then, some typical fabrication strategies in magnetic nanomaterials for controlled composition, morphologies and sizes are reviewed; and surface modification methods with better hydrophilcity and biocompatibility are presented. Next, magnetic nanomaterials-based applications in biomedical field are highlighted in detail, mainly including magnetic resonance image, magnetic hyperthermia, cancer therapy, multi-mode imaging, imaging-guided therapy and manipulate biological objects.
Finally, biocompatibility issues caused by magnetic nanomaterials are also overviewed.
This book aims to address cutting-edge progress in the area of synthesis and biomedical applications of magnetic nanomaterials. It compiles a broad spectrum from fundamental principles to technological advances, from synthesis and modification to biomedical applications along with biocompatibility. The main topics include principles in nanomagnetism, technologies for magnetic nanomaterials fabrication, developments in their biomedical applications, and the challenges in the toxicity in clinical translation.
The first part introduced the principles of nanomagnetism and specific properties in magnetic nanomaterials. Then, some typical fabrication strategies in magnetic nanomaterials for controlled composition, morphologies and sizes are reviewed; and surface modification methods with better hydrophilcity and biocompatibility are presented. Next, magnetic nanomaterials-based applications in biomedical field are highlighted in detail, mainly including magnetic resonance image, magnetic hyperthermia, cancer therapy, multi-mode imaging, imaging-guided therapy and manipulate biological objects.
Finally, biocompatibility issues caused by magnetic nanomaterials are also overviewed.
The first part introduced the principles of nanomagnetism and specific properties in magnetic nanomaterials. Then, some typical fabrication strategies in magnetic nanomaterials for controlled composition, morphologies and sizes are reviewed; and surface modification methods with better hydrophilcity and biocompatibility are presented. Next, magnetic nanomaterials-based applications in biomedical field are highlighted in detail, mainly including magnetic resonance image, magnetic hyperthermia, cancer therapy, multi-mode imaging, imaging-guided therapy and manipulate biological objects.
Finally, biocompatibility issues caused by magnetic nanomaterials are also overviewed.