R pour les data sciences. Importer, classer, transformer, visualiser et modéliser les données

Par : Hadley Wickham, Garrett Grolemund
Actuellement indisponible
Cet article est actuellement indisponible, il ne peut pas être commandé sur notre site pour le moment. Nous vous invitons à vous inscrire à l'alerte disponibilité, vous recevrez un e-mail dès que cet ouvrage sera à nouveau disponible.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages496
  • FormatMulti-format
  • ISBN978-2-212-73151-4
  • EAN9782212731514
  • Date de parution16/08/2018
  • Protection num.pas de protection
  • Infos supplémentairesMulti-Format
  • ÉditeurEyrolles
  • TraducteurRaphaël Payen

Résumé

Les data sciences constituent une discipline fascinante, qui vous servira à transformer des données brutes en idées et connaissances aisément compréhensibles. L'objectif de ce livre est de vous aider à maîtriser les outils essentiels qui vous permettront d'utiliser  R dans la pratique des data sciences. Après l'avoir lu, vous pourrez faire face à la plupart des situations que vous rencontrerez dans vos projets, en exploitant au mieux les fonctionnalités de R. Mais avant de devenir un expert en R, vous devrez tout d'abord importer vos données, c'est-à-dire  les lire, en général depuis un fichier, une base de données ou une API web, et les charger dans un cadre de données dans R.
Si vous ne pouvez pas transférer  vos données dans R, vous ne pourrez pas les analyser ! Une fois vos données importées, vous gagnerez beaucoup à les ranger. Une fois vos données rangées, vous passerez bien souvent par une étape de transformation. Une fois vos données rangées avec les variables  dont vous avez besoin, la génération de connaissances reposera principalement  sur deux moteurs : la visualisation et la modélisation.  Leurs forces et faiblesses sont complémentaires, et toute bonne analyse doit tenir compte des deux. Inutile d'être un programmeur expert pour être un bon analyste de données, mais apprendre à programmer
Les data sciences constituent une discipline fascinante, qui vous servira à transformer des données brutes en idées et connaissances aisément compréhensibles. L'objectif de ce livre est de vous aider à maîtriser les outils essentiels qui vous permettront d'utiliser  R dans la pratique des data sciences. Après l'avoir lu, vous pourrez faire face à la plupart des situations que vous rencontrerez dans vos projets, en exploitant au mieux les fonctionnalités de R. Mais avant de devenir un expert en R, vous devrez tout d'abord importer vos données, c'est-à-dire  les lire, en général depuis un fichier, une base de données ou une API web, et les charger dans un cadre de données dans R.
Si vous ne pouvez pas transférer  vos données dans R, vous ne pourrez pas les analyser ! Une fois vos données importées, vous gagnerez beaucoup à les ranger. Une fois vos données rangées, vous passerez bien souvent par une étape de transformation. Une fois vos données rangées avec les variables  dont vous avez besoin, la génération de connaissances reposera principalement  sur deux moteurs : la visualisation et la modélisation.  Leurs forces et faiblesses sont complémentaires, et toute bonne analyse doit tenir compte des deux. Inutile d'être un programmeur expert pour être un bon analyste de données, mais apprendre à programmer
R for Data Science
Hadley Wickham, Garrett Grolemund
Grand Format
54,10 €