
Python for Machine Learning: From Fundamentals to Real-World Applications
Par : ,Formats :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
- FormatePub
- ISBN8223290100
- EAN9798223290100
- Date de parution10/11/2023
- Protection num.pas de protection
- Infos supplémentairesepub
- ÉditeurDraft2Digital
Résumé
As you progress, you'll explore the core machine learning algorithms, data preprocessing techniques, and Python libraries that are crucial for building predictive models. From linear regression and decision trees to neural networks and deep learning, this book covers a wide range of machine learning topics. Key Features:Build a strong foundation in Python programming and data manipulation. Understand the key concepts and algorithms of machine learning.
Apply machine learning techniques to real-world problems and datasets. Explore popular Python libraries like scikit-learn, TensorFlow, and Keras. Gain insights into model evaluation, hyperparameter tuning, and feature selection. Work on hands-on projects and develop a portfolio of machine learning applications. "Python for Machine Learning" doesn't stop at theory; it takes you through practical, real-world applications.
You'll work on projects that involve image recognition, natural language processing, recommendation systems, and more. By the end of the book, you'll have the confidence to tackle complex machine learning challenges and contribute to cutting-edge data science projects. Whether you aspire to become a data scientist, machine learning engineer, or simply want to harness the power of machine learning in your current role, this book is your key to unlocking the vast potential of Python for machine learning.