Python for Data Analysis

Par : Wes McKinney

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages470
  • FormatMulti-format
  • ISBN978-1-4493-1978-6
  • EAN9781449319786
  • Date de parution08/10/2012
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF sans p...
  • ÉditeurO'Reilly Media

Résumé

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language. Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies.
It's ideal for analysts new to Python and for Python programmers new to scientific computing. - Use the IPython interactive shell as your primary development environment - Learn basic and advanced NumPy (Numerical Python) features - Get started with data analysis tools in the pandas library - Use high-performance tools to load, clean, transform, merge, and reshape data - Create scatter plots and static or interactive visualizations with matplotlib - Apply the pandas groupby facility to slice, dice, and summarize datasets - Measure data by points in time, whether it's specific instances, fixed periods, or intervals - Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language. Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies.
It's ideal for analysts new to Python and for Python programmers new to scientific computing. - Use the IPython interactive shell as your primary development environment - Learn basic and advanced NumPy (Numerical Python) features - Get started with data analysis tools in the pandas library - Use high-performance tools to load, clean, transform, merge, and reshape data - Create scatter plots and static or interactive visualizations with matplotlib - Apply the pandas groupby facility to slice, dice, and summarize datasets - Measure data by points in time, whether it's specific instances, fixed periods, or intervals - Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples