Python Data Science Cookbook
Par :Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub protégé est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
- Non compatible avec un achat hors France métropolitaine

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- FormatePub
- ISBN8231965915
- EAN9798231965915
- Date de parution10/02/2025
- Protection num.Adobe DRM
- Infos supplémentairesepub
- ÉditeurWalzone Press
Résumé
For data scientists who need immediate solutions, this book walks through common Python challenges and shows how to transform messy data into actionable insights. Beginning with nested JSON flattening and imputation of missing values, it guides through outlier clipping, feature scaling, duplicate removal, and efficient data structures. Exploratory techniques illustrate how to compute descriptive statistics, generate histograms and correlation heatmaps, build pivot tables, and visualize time-series trends.
Feature engineering recipes cover polynomial transformations, scaling strategies, rolling averages, dimensionality reduction, and encoding of complex categorical fields. The later chapters integrate these steps into automated workflows that include imputation, scaling, feature selection, and custom transformations. Statistical testing and machine-learning sections demonstrate hypothesis evaluation, regression modeling, decision-tree construction, clustering, and performance metrics.
A final troubleshooting section addresses common library errors and ensures consistent plotting and integration across pandas, NumPy, and visualization tools.
Feature engineering recipes cover polynomial transformations, scaling strategies, rolling averages, dimensionality reduction, and encoding of complex categorical fields. The later chapters integrate these steps into automated workflows that include imputation, scaling, feature selection, and custom transformations. Statistical testing and machine-learning sections demonstrate hypothesis evaluation, regression modeling, decision-tree construction, clustering, and performance metrics.
A final troubleshooting section addresses common library errors and ensures consistent plotting and integration across pandas, NumPy, and visualization tools.
For data scientists who need immediate solutions, this book walks through common Python challenges and shows how to transform messy data into actionable insights. Beginning with nested JSON flattening and imputation of missing values, it guides through outlier clipping, feature scaling, duplicate removal, and efficient data structures. Exploratory techniques illustrate how to compute descriptive statistics, generate histograms and correlation heatmaps, build pivot tables, and visualize time-series trends.
Feature engineering recipes cover polynomial transformations, scaling strategies, rolling averages, dimensionality reduction, and encoding of complex categorical fields. The later chapters integrate these steps into automated workflows that include imputation, scaling, feature selection, and custom transformations. Statistical testing and machine-learning sections demonstrate hypothesis evaluation, regression modeling, decision-tree construction, clustering, and performance metrics.
A final troubleshooting section addresses common library errors and ensures consistent plotting and integration across pandas, NumPy, and visualization tools.
Feature engineering recipes cover polynomial transformations, scaling strategies, rolling averages, dimensionality reduction, and encoding of complex categorical fields. The later chapters integrate these steps into automated workflows that include imputation, scaling, feature selection, and custom transformations. Statistical testing and machine-learning sections demonstrate hypothesis evaluation, regression modeling, decision-tree construction, clustering, and performance metrics.
A final troubleshooting section addresses common library errors and ensures consistent plotting and integration across pandas, NumPy, and visualization tools.