Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages350
  • FormatMulti-format
  • ISBN978-1-4493-2696-8
  • EAN9781449326968
  • Date de parution19/09/2012
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF sans p...
  • ÉditeurO'Reilly Media

Résumé

Need to move a relational database application to Hadoop? This comprehensive guide introduces you to Apache Hive, Hadoop's data warehouse infrastructure. You'll quickly learn how to use Hive's SQL dialect-HiveQL-to summarize, query, and analyze large datasets stored in Hadoop's distributed filesystem. This example-driven guide shows you how to set up and configure Hive in your environment, provides a detailed overview of Hadoop and MapReduce, and demonstrates how Hive works within the Hadoop ecosystem.
You'll also find real-world case studies that describe how companies have used Hive to solve unique problems involving petabytes of data. - Use Hive to create, alter, and drop databases, tables, views, functions, and indexes - Customize data formats and storage options, from files to external databases - Load and extract data from tables-and use queries, grouping, filtering, joining, and other conventional query methods - Gain best practices for creating user defined functions (UDFs) - Learn Hive patterns you should use and anti-patterns you should avoid - Integrate Hive with other data processing programs - Use storage handlers for NoSQL databases and other datastores - Learn the pros and cons of running Hive on Amazon's Elastic MapReduce
Need to move a relational database application to Hadoop? This comprehensive guide introduces you to Apache Hive, Hadoop's data warehouse infrastructure. You'll quickly learn how to use Hive's SQL dialect-HiveQL-to summarize, query, and analyze large datasets stored in Hadoop's distributed filesystem. This example-driven guide shows you how to set up and configure Hive in your environment, provides a detailed overview of Hadoop and MapReduce, and demonstrates how Hive works within the Hadoop ecosystem.
You'll also find real-world case studies that describe how companies have used Hive to solve unique problems involving petabytes of data. - Use Hive to create, alter, and drop databases, tables, views, functions, and indexes - Customize data formats and storage options, from files to external databases - Load and extract data from tables-and use queries, grouping, filtering, joining, and other conventional query methods - Gain best practices for creating user defined functions (UDFs) - Learn Hive patterns you should use and anti-patterns you should avoid - Integrate Hive with other data processing programs - Use storage handlers for NoSQL databases and other datastores - Learn the pros and cons of running Hive on Amazon's Elastic MapReduce