Pratique de la data science avec R. Arranger, visualiser, analyser et présenter des données
Par :Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF protégé est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
- Non compatible avec un achat hors France métropolitaine
, qui est-ce ?Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages282
- FormatPDF
- ISBN978-2-340-05483-7
- EAN9782340054837
- Date de parution08/06/2021
- Protection num.Adobe DRM
- Infos supplémentairespdf
- ÉditeurEllipses
Résumé
Le scientifique des données doit maîtriser plusieurs outils informatiques permettant de mettre en ouvre une méthodologie statistique. Dans sa catégorie, le langage R est un langage de programmation qui peut tout à fait être un outil pertinent pour l'analyse statistique de données, à côté d'autres langages de programmation ou d'autres logiciels. Cet ouvrage s'adresse tant à des étudiants de master en statistique et/ou master big data qui font leurs premiers pas en data science, qu'à des ingénieurs qui souhaitent approfondir leurs connaissances et mettre en ouvre leurs compétences à l'aide de R, en reprenant les différentes étapes du cycle de vie d'un projet basé sur l'analyse statistique de données : la préparation des données, la transformation des données, la visualisation des données, l'analyse des données et enfin, l'étape ultime, la diffusion des résultats de l'analyse.
Le scientifique des données doit maîtriser plusieurs outils informatiques permettant de mettre en ouvre une méthodologie statistique. Dans sa catégorie, le langage R est un langage de programmation qui peut tout à fait être un outil pertinent pour l'analyse statistique de données, à côté d'autres langages de programmation ou d'autres logiciels. Cet ouvrage s'adresse tant à des étudiants de master en statistique et/ou master big data qui font leurs premiers pas en data science, qu'à des ingénieurs qui souhaitent approfondir leurs connaissances et mettre en ouvre leurs compétences à l'aide de R, en reprenant les différentes étapes du cycle de vie d'un projet basé sur l'analyse statistique de données : la préparation des données, la transformation des données, la visualisation des données, l'analyse des données et enfin, l'étape ultime, la diffusion des résultats de l'analyse.





