Practical Machine Learning with Spark: Uncover Apache Spark’s Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML(English Edition)
Par : , ,Formats :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
- Non compatible avec un achat hors France métropolitaine

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
- FormatePub
- ISBN978-93-91392-08-6
- EAN9789391392086
- Date de parution28/04/2022
- Protection num.Adobe DRM
- Infos supplémentairesepub
- ÉditeurBPB Publications
Résumé
Readers will learn about Spark MLib and how to utilize it in supervised and unsupervised machine learning scenarios. With the help of Spark, some of the most prominent technologies, such as natural language processing and computer vision, are evaluated and demonstrated in a realistic setting. Using the capabilities of Apache Spark, this book discusses the fundamental components that underlie each of these natural language processing, computer vision, and machine learning technologies, as well as how you can incorporate these technologies into your business processes. WHAT YOU WILL LEARN?Learn how to get started with machine learning projects using Spark.? Witness how to use Spark MLib's design for machine learning and deep learning operations.? Use Spark in tasks involving NLP, unsupervised learning, and computer vision.? Experiment with Spark in a cloud environment and with AI pipeline workflows.? Run deep learning applications on a distributed network.
WHO THIS BOOK IS FORThis book is valuable for data engineers, machine learning engineers, data scientists, data architects, business analysts, and technical consultants worldwide. It would be beneficial to have some familiarity with the fundamentals of Hadoop and Python.