Neural Networks with Python

Par : Mei Wong
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8223240051
  • EAN9798223240051
  • Date de parution02/11/2023
  • Protection num.Adobe DRM
  • Infos supplémentairesepub
  • ÉditeurDraft2Digital

Résumé

"Neural Networks with Python" serves as an introductory guide for those taking their first steps into neural network development with Python. It's tailored to assist beginners in understanding the foundational elements of neural networks and to provide them with the confidence to delve deeper into this intriguing area of machine learning. In this book, readers will embark on a learning journey, starting from the very basics of Python programming, progressing through essential concepts, and gradually building up to more complex neural network architectures. The book simplifies the learning process by using relatable examples and datasets, making the concepts accessible to everyone.
You will be introduced to various neural network architectures such as Feedforward, Convolutional, and Recurrent Neural Networks, among others. Each type is explained in a clear and concise manner, with practical examples to illustrate their applications. The book emphasizes the real-world applications and practical aspects of neural network development, rather than just theoretical knowledge. Readers will also find guidance on how to troubleshoot and refine their neural network models.
The goal is to equip you with a solid understanding of how to create efficient and effective neural networks, while also being mindful of the common challenges that may arise. By the end of your journey with this book, you will have a foundational understanding of neural networks within the Python ecosystem and be prepared to apply this knowledge to real-world scenarios. "Neural Networks with Python" aims to be your stepping stone into the vast world of machine learning, empowering you to build upon this knowledge and explore more advanced topics in the future. Key Learnings Master Python for machine learning, from setup to complex models.
Gain flexibility with diverse neural network architectures for various problems. Hands-on experience in building, training, and fine-tuning neural networks. Learn strategic approaches for troubleshooting and optimizing neural models. Grasp advanced topics like autoencoders, capsule networks, and attention mechanisms. Acquire skills in crucial data preprocessing and augmentation techniques. Understand and apply optimization techniques and hyperparameter tuning.
Implement an end-to-end machine learning project, from data to deployment.  Table of Content Python, TensorFlow, and your First Neural Network Deep Dive into Feedforward Networks Convolutional Networks for Visual Tasks Recurrent Networks for Sequence Data Data Generation with GANs Transformers for Complex Tasks Autoencoders for Data Compression and Generation Capsule Networks
"Neural Networks with Python" serves as an introductory guide for those taking their first steps into neural network development with Python. It's tailored to assist beginners in understanding the foundational elements of neural networks and to provide them with the confidence to delve deeper into this intriguing area of machine learning. In this book, readers will embark on a learning journey, starting from the very basics of Python programming, progressing through essential concepts, and gradually building up to more complex neural network architectures. The book simplifies the learning process by using relatable examples and datasets, making the concepts accessible to everyone.
You will be introduced to various neural network architectures such as Feedforward, Convolutional, and Recurrent Neural Networks, among others. Each type is explained in a clear and concise manner, with practical examples to illustrate their applications. The book emphasizes the real-world applications and practical aspects of neural network development, rather than just theoretical knowledge. Readers will also find guidance on how to troubleshoot and refine their neural network models.
The goal is to equip you with a solid understanding of how to create efficient and effective neural networks, while also being mindful of the common challenges that may arise. By the end of your journey with this book, you will have a foundational understanding of neural networks within the Python ecosystem and be prepared to apply this knowledge to real-world scenarios. "Neural Networks with Python" aims to be your stepping stone into the vast world of machine learning, empowering you to build upon this knowledge and explore more advanced topics in the future. Key Learnings Master Python for machine learning, from setup to complex models.
Gain flexibility with diverse neural network architectures for various problems. Hands-on experience in building, training, and fine-tuning neural networks. Learn strategic approaches for troubleshooting and optimizing neural models. Grasp advanced topics like autoencoders, capsule networks, and attention mechanisms. Acquire skills in crucial data preprocessing and augmentation techniques. Understand and apply optimization techniques and hyperparameter tuning.
Implement an end-to-end machine learning project, from data to deployment.  Table of Content Python, TensorFlow, and your First Neural Network Deep Dive into Feedforward Networks Convolutional Networks for Visual Tasks Recurrent Networks for Sequence Data Data Generation with GANs Transformers for Complex Tasks Autoencoders for Data Compression and Generation Capsule Networks
Google JAX Essentials
Mei Wong
E-book
27,99 €