Monotonicity Conditions in Convergence of Trigonometric Series

Par : Songping ZHOU, Yi ZHAO
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages262
  • FormatPDF
  • ISBN978-2-7598-3717-5
  • EAN9782759837175
  • Date de parution07/11/2024
  • Protection num.Digital Watermarking
  • Taille2 Mo
  • Infos supplémentairespdf
  • ÉditeurEDP Sciences

Résumé

This book provides a comprehensive survey and investigation into the monotonicity conditions applied to the coefficients of trigonometric (or Fourier) series, exploring how these conditions influence various convergence properties, along with related topics on positivity and monotonicity. Highlighting recent breakthroughs, the book offers a systematic review of the history and development of this area, focusing on current ideas, methods, and techniques to equip readers for future advancements. Designed to be both systematic and original, the book serves as an accessible resource for mathematicians and students in analysis.
With its self-contained approach, it requires only a basic knowledge of analysis, making it suitable as an advanced textbook for graduate students or a reference for researchers interested in this field.
This book provides a comprehensive survey and investigation into the monotonicity conditions applied to the coefficients of trigonometric (or Fourier) series, exploring how these conditions influence various convergence properties, along with related topics on positivity and monotonicity. Highlighting recent breakthroughs, the book offers a systematic review of the history and development of this area, focusing on current ideas, methods, and techniques to equip readers for future advancements. Designed to be both systematic and original, the book serves as an accessible resource for mathematicians and students in analysis.
With its self-contained approach, it requires only a basic knowledge of analysis, making it suitable as an advanced textbook for graduate students or a reference for researchers interested in this field.