Modern Optimization Methods
Par :Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages157
- FormatPDF
- ISBN978-2-7598-3175-3
- EAN9782759831753
- Date de parution13/11/2023
- Protection num.Digital Watermarking
- Taille7 Mo
- Infos supplémentairespdf
- ÉditeurEDP Sciences
Résumé
With the fast development of big data and artificial intelligence, a natural question is how do we analyze data more efficiently? One of the efficient ways is to use optimization. What is optimization? Optimization exists everywhere. People optimize. As long as you have choices, you do optimization. Optimization is the key of operations research. This book introduces the basic definitions and theory about numerical optimization, including optimality conditions for unconstrained and constrained optimization, as well as algorithms for unconstrained and constrained problems.
Moreover, it also includes the nonsmooth Newton's method, which plays an important role in large-scale numerical optimization. Finally, based on the author's research experiences, several latest applications about optimization are introduced, including optimization algorithms for hypergraph matching, support vector machine and bilevel optimization approach for hyperparameter selection in machine learning.
With these optimization tools, one can deal with data more efficiently.
Moreover, it also includes the nonsmooth Newton's method, which plays an important role in large-scale numerical optimization. Finally, based on the author's research experiences, several latest applications about optimization are introduced, including optimization algorithms for hypergraph matching, support vector machine and bilevel optimization approach for hyperparameter selection in machine learning.
With these optimization tools, one can deal with data more efficiently.
With the fast development of big data and artificial intelligence, a natural question is how do we analyze data more efficiently? One of the efficient ways is to use optimization. What is optimization? Optimization exists everywhere. People optimize. As long as you have choices, you do optimization. Optimization is the key of operations research. This book introduces the basic definitions and theory about numerical optimization, including optimality conditions for unconstrained and constrained optimization, as well as algorithms for unconstrained and constrained problems.
Moreover, it also includes the nonsmooth Newton's method, which plays an important role in large-scale numerical optimization. Finally, based on the author's research experiences, several latest applications about optimization are introduced, including optimization algorithms for hypergraph matching, support vector machine and bilevel optimization approach for hyperparameter selection in machine learning.
With these optimization tools, one can deal with data more efficiently.
Moreover, it also includes the nonsmooth Newton's method, which plays an important role in large-scale numerical optimization. Finally, based on the author's research experiences, several latest applications about optimization are introduced, including optimization algorithms for hypergraph matching, support vector machine and bilevel optimization approach for hyperparameter selection in machine learning.
With these optimization tools, one can deal with data more efficiently.