Nouveauté

ML Ops on Azure: From Models to Production

Par : Kameron Hussain, Frahaan Hussain
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8231487691
  • EAN9798231487691
  • Date de parution19/05/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurWalzone Press

Résumé

ML Ops on Azure: From Models to Production delivers a comprehensive, hands-on roadmap for mastering machine learning operations (MLOps) using Microsoft Azure. Designed for ML engineers, data scientists, and cloud architects, this guide takes readers beyond experimentation to fully operationalizing machine learning workflows. With the rapid growth of AI in enterprise environments, deploying models at scale is no longer optional-it's essential.
This book provides an in-depth look at the key components of MLOps within the Azure ecosystem, including Azure Machine Learning, DevOps integration, automated pipelines, version control, model monitoring, and governance. Starting with foundational concepts, readers will learn how to structure reproducible ML workflows, collaborate efficiently across teams, and implement continuous integration and continuous delivery (CI/CD) pipelines for model training and deployment.
Real-world use cases, diagrams, and code examples provide clarity and actionable insights throughout the book. Key features include: Step-by-step implementation of MLOps using Azure ML Building and automating ML pipelines Versioning data, code, and models Integrating GitHub Actions and Azure DevOps Monitoring model performance and managing drift Ensuring compliance and governance at scale Whether you're transitioning from Jupyter notebooks to enterprise-grade systems or seeking to streamline existing ML operations, this book equips you with the tools and knowledge to build scalable, secure, and maintainable AI solutions on Azure. Take your models from concept to production with confidence-and unlock the full potential of MLOps in the cloud. 
ML Ops on Azure: From Models to Production delivers a comprehensive, hands-on roadmap for mastering machine learning operations (MLOps) using Microsoft Azure. Designed for ML engineers, data scientists, and cloud architects, this guide takes readers beyond experimentation to fully operationalizing machine learning workflows. With the rapid growth of AI in enterprise environments, deploying models at scale is no longer optional-it's essential.
This book provides an in-depth look at the key components of MLOps within the Azure ecosystem, including Azure Machine Learning, DevOps integration, automated pipelines, version control, model monitoring, and governance. Starting with foundational concepts, readers will learn how to structure reproducible ML workflows, collaborate efficiently across teams, and implement continuous integration and continuous delivery (CI/CD) pipelines for model training and deployment.
Real-world use cases, diagrams, and code examples provide clarity and actionable insights throughout the book. Key features include: Step-by-step implementation of MLOps using Azure ML Building and automating ML pipelines Versioning data, code, and models Integrating GitHub Actions and Azure DevOps Monitoring model performance and managing drift Ensuring compliance and governance at scale Whether you're transitioning from Jupyter notebooks to enterprise-grade systems or seeking to streamline existing ML operations, this book equips you with the tools and knowledge to build scalable, secure, and maintainable AI solutions on Azure. Take your models from concept to production with confidence-and unlock the full potential of MLOps in the cloud.