Mathematics for Data Science: Linear Algebra with Matlab

Par : César Pérez López
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8224204588
  • EAN9798224204588
  • Date de parution01/01/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurVirtued Press

Résumé

Mathematics is an essential toolset for data scientists. By mastering these mathematical concepts, data scientists can better understand the underlying mechanisms of machine learning algorithms, improve their ability to clean and manipulate data, and make more accurate predictions and decisions based on data. Matlab has functions that allow easy work in Linear Algebra. In this book, typical algebra topics are developed, such as work in discrete mathematics through numerical algebra in the real and complex fields.
Work with algebraic expressions, polynomials, equations, systems of equations, matrices, vector spaces, linear maps, and quadratic forms is presented. Matrix algebra is specially developed with advanced treatment of eigenvalues, eigenvectors and diagonalization. He also delves into drawing curves and surfaces in explicit, implicit, parametric, and polar coordinates. The concepts are accompanied by examples solved step by step with Matlab
Mathematics is an essential toolset for data scientists. By mastering these mathematical concepts, data scientists can better understand the underlying mechanisms of machine learning algorithms, improve their ability to clean and manipulate data, and make more accurate predictions and decisions based on data. Matlab has functions that allow easy work in Linear Algebra. In this book, typical algebra topics are developed, such as work in discrete mathematics through numerical algebra in the real and complex fields.
Work with algebraic expressions, polynomials, equations, systems of equations, matrices, vector spaces, linear maps, and quadratic forms is presented. Matrix algebra is specially developed with advanced treatment of eigenvalues, eigenvectors and diagonalization. He also delves into drawing curves and surfaces in explicit, implicit, parametric, and polar coordinates. The concepts are accompanied by examples solved step by step with Matlab