Nouveauté

Mastering Big Data in Finance: Analytics and Risk Assessment. Digital Life, #1

Par : Tony Sale
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8231897506
  • EAN9798231897506
  • Date de parution16/06/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurWalzone Press

Résumé

What's driving the real decisions in finance today? Hint: it's not gut feeling or outdated dashboards. It's data-lots of it. But raw data isn't value. You need the right models, tools, and systems to turn it into strategy. This book is a hands-on, no-nonsense guide to how big data and AI are transforming finance-from
What's driving the real decisions in finance today? Hint: it's not gut feeling or outdated dashboards. It's data-lots of it. But raw data isn't value. You need the right models, tools, and systems to turn it into strategy. This book is a hands-on, no-nonsense guide to how big data and AI are transforming finance-from fraud detection and portfolio management to predictive modeling, compliance, and intelligent automation.
Whether you're a practitioner, analyst, or executive, this book will help you understand not just the technology, but the logic behind it. ? What You'll Learn What big data really means (and doesn't) in finance The 5 V's-Volume, Velocity, Variety, Veracity, Value-with real financial use cases Common challenges: data quality, ethical traps, platform confusion Types of analytics: descriptive, predictive, prescriptive, cognitive How Spark, Hadoop, and modern platforms power distributed processing Smart adoption of cloud and multi-cloud strategies (AWS, Azure, GCP) Case studies from fraud detection to behavioral scoring ML + big data: algorithms, preprocessing, drift, and debugging Big data applications in portfolio theory and forecasting Real-time decision systems and intelligent agents Compliance, GDPR, explainability, and governance essentials  ?? Who It's For Finance professionals who need to understand big data without getting lost in code Data scientists working in banking, insurance, or fintech Managers and decision-makers who want to avoid buzzwords and get to what works Students or Udemy course attendees who want more depth, examples, and practical structure  ?? Bonus: Appendices Include? Glossary of key terms (plain English) Tool & platform recommendations Open-source vs enterprise decision guide Setup tips for local Spark, Kafka, and ML experimentation Further reading, datasets, and resource links  Built for clarity.
Focused on real-world application. Designed to stay relevant. ?? Start making decisions with your data-not despite it.