Nouveauté

Machine Learning for Algorithmic Trading: Advanced Strategies for Market Prediction and Automated Decision Making

Par : Aarav Joshi
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8231275489
  • EAN9798231275489
  • Date de parution22/05/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurWalzone Press

Résumé

Machine Learning for Algorithmic Trading: Advanced Strategies for Market Prediction and Automated Decision MakingThis comprehensive guide introduces end-to-end machine learning for algorithmic trading, taking readers from foundational concepts to advanced implementation. The book covers the complet
Machine Learning for Algorithmic Trading: Advanced Strategies for Market Prediction and Automated Decision MakingThis comprehensive guide introduces end-to-end machine learning for algorithmic trading, taking readers from foundational concepts to advanced implementation. The book covers the complete trading workflow-from data engineering and alpha factor research to model development, strategy backtesting, and production deployment.
Readers will learn how to leverage market, fundamental, and alternative data sources to generate tradeable signals. The book explores supervised learning for return prediction, deep learning architectures for pattern recognition, natural language processing for market intelligence, and reinforcement learning for adaptive trading strategies. Advanced topics include portfolio optimization, quantum computing applications, explainable AI for trading decisions, and emerging trends like federated learning and decentralized finance.
With practical Python examples throughout, this book equips data scientists, quantitative analysts, and portfolio managers with the knowledge to build sophisticated trading systems that operate at various time horizons. Whether you're looking to develop statistical arbitrage strategies, implement deep learning models for market prediction, or create risk-aware reinforcement learning agents, this book provides the theoretical foundation and practical implementation details needed to succeed in modern algorithmic trading.